Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • ITER Design Handbook | Preserving the vital legacy of ITER

    The contributions that ITER is making to fusion physics and engineering—through decades of decisions and implementation—are delivering insights to the fusion co [...]

    Read more

  • Electron cyclotron heating | Aligning technology and physics

    ITER, like other fusion devices, will rely on a mix of external heating technologies to bring the plasma to the temperature necessary for fusion. At a five-day [...]

    Read more

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

Of Interest

See archived entries

The first 60 metres

Inside the Poloidal Field Coils Winding Facility, around 60 metres of conductor length have already been submitted to the series of operations that will ultimately turn cable-in-conduit (CICC) conductor into the "double pancake windings" for the ring-shaped magnets of the ITER Tokamak.

Some 60 metres of conductor length have already been submitted to the de-spooling, straightening, cleaning, bending, re-cleaning, drying and taping operations that mark the first stage of coil fabrication. (Click to view larger version...)
Some 60 metres of conductor length have already been submitted to the de-spooling, straightening, cleaning, bending, re-cleaning, drying and taping operations that mark the first stage of coil fabrication.
The process—from conductor de-spooling to tape and fiberglass wrapping—represents only the first stage of fabrication (the "winding" stage) and just a fraction of the material that will go into making the double pancakes of an actual poloidal field coil.

Depending on their size, the four poloidal field coils manufactured on site by Europe will require from 6 to 14 km of conductor.

With the winding table now commissionned, fabrication for a ''pre-dummy'' and a real-size dummy, using copper conductor in lieu of the actual niobium-titanium (NbTi) alloy, will begin in late June. (Click to view larger version...)
With the winding table now commissionned, fabrication for a ''pre-dummy'' and a real-size dummy, using copper conductor in lieu of the actual niobium-titanium (NbTi) alloy, will begin in late June.
With the winding machine now commissioned, the fabrication of a pre-dummy (a few more turns than the present sample) followed by an actual dummy for poloidal field coil #5 (17 metres in diameter) will begin in late June.

However, before dummy fabrication can start one last operation needs to be performed: the cleaning, from top to bottom, of all the surfaces inside the 12,000 square metres building to ensure the required clean atmosphere—a task that has just begun and will take about four weeks to complete.

Click here to view a video, produced by the European agency for ITER, on the manufacturing process of the ITER poloidal field coils.


return to the latest published articles