|
|
![]() Technicians are seen busy in providing the final installations of 50 kV electrical isolators for the assembly housing the gas feed system. ITER India is responsible for the procurement of the Diagnostic Neutral Beam (DNB), which will play the very important role of helping to detect the amount of helium ash inside of the ITER Tokamak. It will do so through charge exchange spectroscopy (CXRS), which is a measure of the efficiency of the fusion reactions in the device. The DNB will consist of a negative ion source-based neutral beam of hydrogen atoms with 100keV of energy and 17-20A of beam current with a divergence not exceeding ~7millirad. India has already signed the Procurement Arrangement (PA) for delivering the DNB. At present, the detailed engineering design and R&D for the DNB system is ongoing. ![]() A dedicated assembly group have participated with infectious enthusiasm in the assembly and integration of the injector. ![]() The complex task is performed by a set of controllers which are integrated through fiber optic or hard wired cabling. The success in operating ion sources can be largely attributed to effective control of the discharge current. This complex task is performed by a set of controllers that are integrated through fibre optic or hard wired cabling. The positive ion injector is now in its final stages of integration with the cryosystem and will soon be available to the engineers for the commissioning of a full power beam. ![]() Final connecting works to the filaments. The plasma source has just been commissioned with 85 kW of RF power coupled to the plasma. The program will be expanded to include creation of facilities for tests of larger sources, ultimately converging towards the commissioning of a test facility in India for R&D of the ITER-DNB system to address the complex physics and technology aspects of the NB systems. << return to Newsline #139 |
||||
| Pour tous commentaires ou questions, adressez vous à webmaster@iter.org. © 2013, ITER Organization | Terms of use | |||||