Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A world in itself

    From a height of some 50 metres, you have the entire ITER worksite at your feet. The long rectangle of the Diagnostics Building stands out in the centre, with [...]

    Read more

  • US completes toroidal field deliveries for ITER

    The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal fi [...]

    Read more

  • Thin diagnostic coils to be fitted into giant magnets

    Last week was marked by the first delivery of diagnostic components—Continuous External Rogowski (CER) coils—from the European Domestic Agency to the ITER Organ [...]

    Read more

  • Addressing the challenge of plasma disruptions

    Plasma disruptions are fast events in tokamak plasmas that lead to the complete loss of the thermal and magnetic energy stored in the plasma. The plasma control [...]

    Read more

  • Blending (almost) seamlessly into the landscape

    Located in the foothills of the French Pre-Alps, the ITER installation blends almost seamlessly into the landscape. The architects' choice ofmirror-like steel c [...]

    Read more

Of Interest

See archived articles

Russian gyrotron prototype passes acceptance tests

-Alex Petrov, ITER Russia

For ITER, gyrotron technology will be pushed to the limit, with output beams of 1 MW (for 1,000 sec) at the required 170 GHz. (Click to view larger version...)
For ITER, gyrotron technology will be pushed to the limit, with output beams of 1 MW (for 1,000 sec) at the required 170 GHz.
Another milestone has been recorded in the Russian development program for the ITER gyrotrons—the 24 energy-generating units that will inject powerful microwave beams into the vacuum vessel to heat the plasma and drive plasma current.

At the industrial complex of Gycom Ltd in Nizhny Novgorod, the Russian gyrotron prototype successfully passed factory acceptance tests in the presence of ITER Organization representatives. The promising results will open the way to series production once the final design review will be successfully closed. The Russian Domestic Agency will supply 8 of ITER's 24 gyrotrons.

The tests, which took place from 11 to 15 May, are a key element in the procurement of the Russian gyrotron that will allow Russian industry to begin the fabrication of this important ITER system. The official factory acceptance tests have to verify key parameters of the prototype, including output beam characteristics, power parameters (>0.95 MW), efficiency (exceeding 50 percent), modulation regimes (1-5 kHz), and durability parameters (>95 percent); test control and parameter registration; and confirm the main technical solutions for the system. Most of these parameters were successfully monitored during these tests, aiming to consolidate the series gyrotron factory acceptance test program and allowing the preparation of the Final Design Review with full confidence.

According to the ITER schedule, Russian-fabricated gyrotrons will be the first to be delivered to ITER. (Click to view larger version...)
According to the ITER schedule, Russian-fabricated gyrotrons will be the first to be delivered to ITER.
The first gyrotron was developed at the Russian Applied Physics Institute (Nizhny Novgorod) in 1964. For ITER, gyrotron technology will be pushed to the limit, with output beams of 1 MW (for 1,000 sec) at the required 170 GHz. Four ITER Members—Europe, Japan, Russia and India—are involved in gyrotron procurement. According to the ITER schedule, Russian-fabricated gyrotrons will be the first to be delivered to ITER. 

The development of the Russian gyrotron has been carried out with the cooperation of the Russian Domestic Agency for ITER, the Institute of Applied Physics (Russian Academy of Sciences), Gycom Ltd., the Kurchatov Institute, and CJSC RTSoft.

News from the Japanese and European gyrotron development programs was recently reported in Newsline.



return to the latest published articles