Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Disruption mitigation | Final design review is a major step forward

    The generations of physicists, engineers, technicians and other specialists who have worked in nuclear fusion share a common goal, dedication and responsibility [...]

    Read more

  • Image of the week | Like grasping a bowl of cereal

    Contrary to the vast majority of ITER machine components, the modules that form the central solenoid cannot be lifted by way of hooks and attachments. The 110-t [...]

    Read more

  • Education | 13th ITER International School announced

    The 13th ITER International School (IIS) will be held from 9 to 13 December in Nagoya hosted by National Institute for Fusion Science (NIFS), Japan. The subject [...]

    Read more

  • Open Doors Day | Having fun while discovering ITER

    A public event on Saturday 13 April draws a big crowd. It was a beautiful, summer-like day on Saturday 13 April. Perfect for a journey into ITER. Nearly 800 mem [...]

    Read more

  • Fusion world | Increased awareness in a changing landscape

    The world of fusion research is changing fast, and world leaders are taking notice. The large public projects that occupied centre stage for the past decades ar [...]

    Read more

Of Interest

See archived entries

The physics behind the transition to H-mode

PPPL physicists Seung-Hoe Ku, Robert Hager, Choong-Seock Chang, and Randy Michael Churchill. (Photo by Elle Starkman) (Click to view larger version...)
PPPL physicists Seung-Hoe Ku, Robert Hager, Choong-Seock Chang, and Randy Michael Churchill. (Photo by Elle Starkman)
H‐mode—or the sudden improvement of plasma confinement in the magnetic field of tokamaks by approximately a factor of two—is the high confinement regime that all modern tokamaks, including ITER, rely on.
 
It was observed for the first time rather by accident (read more here) and to this day the physics behind H-mode remains not fully understood.
 
Scientists at the Princeton Plasma Physics Laboratory (PPPL) in the US have made a step in the direction of elucidating the phenomenon by simulating, for the first time, the spontaneous transition of turbulence at the edge of a fusion plasma to H-mode.
 
The research was achieved with the extreme-scale plasma turbulence code XGC developed at PPPL in collaboration with a nationwide team. This massively parallel simulation, which reveals the physics behind the transition, utilized most of a supercomputer's power—running for three days and using 90 percent of the capacity of Titan at the Oak Ridge Leadership Computing Facility (the most powerful supercomputer for open science in the US).
 
"After 35 years, the fundamental physics of the bifurcation of turbulence into H-mode has now been simulated, thanks to the rapid development of the computational hardware and software capability," said C.S. Chang, first author of the April Physical Review Letters paper [118, 175001 (2017)] that reported the findings. Co-authors included a team from PPPL, the University of California, San Diego, and the MIT Plasma Science and Fusion Center. Seung-Hoe Ku of PPPL performed the simulation.
 
Read the full report by John Greenwald on the PPPL website.


return to the latest published articles