Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak Complex | Interior design

    Fresh from the offices of the Design& Construction Integration Division, this cutaway drawing peels back the walls to reveal theinterior layout of the Tokam [...]

    Read more

  • Fusion world | A visit to Kyoto's heliotron

    At the Institute of Advanced Energy, Kyoto University, researchers have been exploring the heliotron concept of magnetic fusion device for more than half a cent [...]

    Read more

  • Construction site | The lights of autumn

    Summer is over in Provence and the beautiful autumn light is back, revealing every detail of the landscape ... and of the ongoing works on the ITER construction [...]

    Read more

  • Cryostat | A true sense of size

    Just like a thermos provides the insulation to keep your coffee warm—or your water cold—the ITER cryostat raises a barrier around the superconducting magnets th [...]

    Read more

  • Image of the week | ITER at 10

    The ITER Organization was established ten years ago, on 24 October 2007. A week ahead of the official anniversary, part of the ITER staff, now numbering 800, ga [...]

    Read more

Of Interest

See archived articles

Divertor

Heat flux in line with design basis

John Greenwald, Princeton Plasma Physics Laboratory

New research from the Princeton Plasma Physics Laboratory (PPPL) predicts that the maximum high heat flux from the ITER Tokamak can be handled by the ITER divertor—the component at the bottom of the machine that, in extracting heat and ash produced by the fusion reaction, withstands the highest surface heat loads of the machine.

The heat flux to be sustained by the ITER divertor targets is estimated at 10-20 MW/m²—or ten times the heat load of a spacecraft re-entering Earth's atmosphere. (Click to view larger version...)
The heat flux to be sustained by the ITER divertor targets is estimated at 10-20 MW/m²—or ten times the heat load of a spacecraft re-entering Earth's atmosphere.
Breaking with projections extrapolated from existing tokamaks that had suggested that the heat flux could be so narrow and concentrated as to damage the front-facing plates of the divertor and require frequent repair, an international team led by PPPL physicist C.S. Chang has painted a more positive picture.

Chang's team used the highly sophisticated XGC1 plasma turbulence computer simulation code developed at PPPL to create the new estimate. The simulation projected a width of 6 millimetres for the heat flux in ITER when measured in a standardized way among tokamaks, far greater than the less-than 1 millimetre width projected through use of experimental data.

Physicist C.S. Chang, from the Princeton Plasma Physics Laboratory. (Click to view larger version...)
Physicist C.S. Chang, from the Princeton Plasma Physics Laboratory.
The discrepancy between the experimental projections and simulation predictions stems from the fact that conditions inside ITER will be too different from those in existing tokamaks for the empirical predictions to be valid, according to Chang. Key differences include the behaviour of plasma particles within today's machines compared with the expected behaviour of particles in ITER. For example, while ions contribute significantly to the heat width in major worldwide facilities, turbulent electrons will play a greater role in ITER, rendering extrapolations unreliable.

Chang's team used basic physics principles, rather than empirical projections based on the data from existing machines, to derive the simulated wider prediction. The team first tested whether the code could predict the heat flux width produced in experiments on US tokamaks, and found the predictions to be valid.

Continue to the PPPL website for the complete article.


return to the latest published articles