Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Vacuum components | Shake, rattle, and... qualify!

    A public-private testing partnership certified that ITER's vacuum components can withstand major seismic events. Making sure the ITER tokamak will be safe in th [...]

    Read more

  • Feeders | Delivering the essentials

    Like a circle of giant syringes all pointing inward, the feeders transport and deliver the essentials to the 10,000-tonne ITER magnet system—that is, electrical [...]

    Read more

  • Image of the week | It's FAB season

    It's FAB season at ITER. Like every year since 2008, the Financial Audit Board (FAB) will proceed with a meticulous audit of the project's finances, siftin [...]

    Read more

  • Disruption mitigation | Final design review is a major step forward

    The generations of physicists, engineers, technicians and other specialists who have worked in nuclear fusion share a common goal, dedication and responsibility [...]

    Read more

  • Image of the week | Like grasping a bowl of cereal

    Contrary to the vast majority of ITER machine components, the modules that form the central solenoid cannot be lifted by way of hooks and attachments. The 110-t [...]

    Read more

Of Interest

See archived entries

Video

How does the ITER cryoplant work?

Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum inside the vacuum vessel ... all need to be brought down to extremely low temperatures (between minus 193 °C and minus 269 °C).

The ITER cryogenic system will be the largest concentrated cryogenic system in the world. (Click to view larger version...)
The ITER cryogenic system will be the largest concentrated cryogenic system in the world.
In order to deliver the cooling fluids to the machine, a large cooling plant has been built at ITER that ranks as the most powerful single-platform cryoplant in the world.

Designed and manufactured by Air Liquide, the ITER cryoplant includes three helium refrigeration units, two nitrogen refrigeration units and 1.6 kilometres of cryogenic lines connecting the plant to the Tokamak Building. Installation activities are underway now.

The complex workings of the ITER cryoplant are explained in this video, produced by Air Liquide.

For more on Air Liquide's contribution to ITER cryogenics, visit this page.



return to the latest published articles