It all began in late 2007 when the first Procurement Arrangements of the ITER project were signed. Those were for the Cable-In-Conduit Conductors of the Toroidal Field (TF) Coils at the heart of the ITER Tokamak. The making of these conductors is remarkable in many ways. First, their manufacturing involves no less than six Domestic Agencies (DA): China, Europe, Japan, Korea, Russia and the US. Second, their scope is unprecedented as they call for the production of more than 400 tons of Cu-Nb3Sn multifilament composite wires. Nb3Sn has excellent superconducting properties and can be operated in magnetic fields in excess of 20 Tesla. But once formed, it becomes brittle and strain sensitive. This sensitivity had always limited its industrial applications and, before ITER, its world production was estimated to 15 tons per year. And last but not least, when the TF conductor Procurement Arrangements (PAs) were launched, the project was still in its early days and none of the quality assurance and control procedures were in place.

Almost three years down the road, seven suppliers around the world are now massively producing Nb3Sn wires: 2 in Japan, 1 in Korea, 1 in Russia, 1 in Europe and 2 in the USA. In addition, the Chinese Domestic Agency recently qualified a domestic supplier that is expected to start production later this year. A significant milestone was achieved last month, when the cumulated amount of strands produced by the seven suppliers crossed the 100 ton mark, representing about 25 percent of the total amount needed for ITER. For those who would rather visualize this volume in length rather than in weight: the overall production of Nb3Sn wire has exceeded 21,000 kilometres.

Getting this production started was not easy. It took 19 months for all six DAs to sign the PA. The Conductor Project Team within the ITER Organization had to pioneer reporting, document handling and quality assurance procedures. As of today, no less than 800 documents have been uploaded into the IDM folder structure put in place for the TF conductor PAs. The most critical among them have undergone a review and approval process, which required iteration with the DAs and their suppliers.

In addition, a web-based Conductor Database has been developed by the ITER IT Group to store critical manufacturing and acceptance test data and enable the DAs and the ITER Organization to check their compliance with PA requirements and to clear the Control Points that punctuate critical production steps. This secured Database is now routinely used by all suppliers across the six DAs. It contains more than 69,000 objects of 149 different types and over 1000 Control Points have been electronically cleared by the DAs and/or the ITER Organization.

My main reward in this job is to see the workshops near the Ural, on Kyushu island in Japan or near the ancient Chinese city of Xi'an bursting with activity and reels of barcoded ITER wires ready to be shipped to cable suppliers. I am also amazed that - together with the six Domestic Agencies - we have been able to develop a common monitoring system and to implement nearly identical quality control procedures that ensure that the wires produced by so many different suppliers achieve the same required performances. The Nb3Sn wire production is expected to continue until 2013, with the first contracts coming to an end in 2012.

http://www.iter.org/newsline/151/474-Arnaud Devred, Leader of the Superconductor Systems and Auxiliaries Section
In order to facilitate the coordination between the ITER Organization and the Domestic Agencies (DAs), especially in view of the new era of ITER construction, a High Level IO-DA Coordination Meeting has recently been created. It will supervise and complement the regular IO-DA meeting. This new management tool will enhance the relationship between the seven DAs and the ITER Organization and enable quick and concrete decision-making.  

The ITER High Level IO-DA Coordination Meeting (IHCM) is composed of the Heads of the seven Domestic Agencies plus one additional representative designated by the DA Head, the ITER Director-General and the Deputy Director-General for the ITER Project Department. It is chaired by the Director-General, who can invite additional observers or experts upon request.  Decisions shall be made by the Director General based on input from the DAs.

The first ITER High Level IODA Coordination Meeting (IHCM) was held in Daejeon, Korea, during the recent IAEA conference. The next IHCM will convene this week on 29 October in Cadarache immediately after the meeting of the Management Advisory Committee (MAC). The IHCM will be normally held during the regular IO-DA meetings.

http://www.iter.org/newsline/151/475
Last week, experts from around the world assembled virtually in Cadarache to conduct a Preliminary Design Review of the ITER In-Vessel Coils (IVC) & Feeders. Their mission was to evaluate the results from the preliminary design work presented by the In-Vessel Coil design team. The hard work of the IVC design team lead by the Princeton Plasma Physics Lab (PPPL) paid off with a successful review enabling design and R&D activities to proceed towards an Interim Review planned for March 2011.

The ITER In-Vessel Coil system is comprised of two systems: The Vertical Stability (VS) coils and the ELM coils. The VS coils are two poloidal field coils located above and below the tokamak's mid-plane. They provide fast vertical stabilization of the plasma. The ELM coils, an array of 27 coils fixed to the wall of the vacuum vessel, provide resonant magnetic perturbations in order to control of the plasma so that certain types of plasma instabilities called Edge-Localized Modes (ELMs) are avoided. 

The control functions provided by these two coil systems are part of the overall Plasma Control System that ensures and maintains stable plasma operations. Two VS coils (marked orange) provide fast vertical stabilization of the plasma. An array of 27 ELM coils (green & blue) provide a magnetic "massage" of the plasma exterior to suppress potentially harmful power deposition on plasma-facing components.

Each in-vessel coil is wound from about 50 metres of conductor consisting of a 59-mm outer diameter stainless steel jacket, an insulating layer of magnesium oxide and an inner copper conductor. Magnesium oxide is chosen for its ability to withstand the harsh radiation environment within the ITER Tokamak. Water will flow through the central hole to remove power deposited from resistive and neutron heating. In total, the in-vessel coils require more than four kilometres of mineral-insulated conductors.

 
Click here to learn more about ELMs and how to control them

Clikc here to find out why not all ELMs are trees.

http://www.iter.org/newsline/151/469-Edward Daly, Mechanical Engineer, Vacuum Vessel Section
The integrity of all components of ITER is demonstrated by a suite of complex computer simulations. All of these components will be subject to nuclear radiation of varying degrees and neutronics analyses is required to determine radiation exposure and response of all of these components.

The size and complexity of this task means it cannot be addressed by just one party but is an integral part of the design process which is carried out within the ITER Organization and amongst all Domestic Agencies. How do we ensure the consistency and quality of these analyses carried out by many teams?

This was the question which was addressed at a meeting involving several experts representing the ITER Organization, Japan, India, Europe, Korea and the US as well as associations from within Europe. The aim was to improve the techniques of analysis and after three days of discussion the result was an improved understanding of the specification of how neutronics analyses should be done and reported.

This outcome was the product of a collaboration between younger scientists and some of the most experienced analysts in the world working together. The younger scientists take back to their countries the benefits of training in advance technologies of radiation transport modelling from the experience of older heads, who in return get the energy, enterprise and innovation from newcomers. These are some of the early spin-offs from the world wide collaborative effort which is ITER. It was also an occasion when new friends were made and an optimistic view of the future was engendered.

Click here if you want to find out how to golf with a neutron...

http://www.iter.org/newsline/151/472-Michael Loughlin, Nucl./Shield. Analysis and Coordinator
Fusion energy and investment market — how do these two worlds fit together? The answer is given in a brand new book called The Gathering Storm. Written by a group of 15 individuals who all managed to discern the gathering storm about to hit the financial markets before the "credit crunch" and subsequent market ructions, the book discusses the economic headwinds that we still face.

An investment broker, Andy Lees is one of the authors. He runs a macro sales/research team at UBS taking macro/thematic stories to institutional and hedge fund investors globally. And he believes in the potential of fusion energy. "Unfortunately without a new source of cheap, high density energy we are in a serious mess," says Andy. Andy explains his motivation for dedicating his contribution to fusion: "Fusion is the obvious solution to the problem, and whilst it has been a long gestation period to get to where we are, it is the only option on the table. We should not be concerned about the cost of achieving fusion, but rather the cost of not achieving it."

Read more on why Andy Lees supports fusion here...

The proceeds of The Gathering Storm (ISBN 978-83-62627-00-4) will be entirely donated to charity projects. And when Andy had to nominate a project, the choice was not difficult; he wishes to donate his royalty to the ITER project. "Fusion power is essential to maintaining and advancing humanity and therefore it has to be the world's top priority. I wanted my contribution to simply highlight that message. It certainly won't make any difference to your budget, but it may put fusion a bit higher up people's agendas. Hopefully it may help publicize just how important your work is to us all."

For more information on the book click here...

For the introduction click here...

http://www.iter.org/newsline/151/470-Sabina Griffith
The ITER Cooling Water System is all cool. Last week, representatives from the two procuring parties - ITER US and ITER India - plus their contractors A/E Areva FS and consultants from Nuclear Power Corporation India Limited and Engineers India Limited, as well as staff from the ITER Cooling Water Section moved the project a big step forward. In a series of meetings, US-ITER reconciled their component delivery dates with the need dates given in the ITER assembly schedule and further developed the optimization of shop fabrication and field assembly requirements.

The focus of the meetings with ITER India was the optimization of the design of the Heat Rejection System and the Component Cooling Water System (CCWS). This optimization focused on the size and number of cooling towers, water basin size, and size and number of CCWS heat exchangers. Also included in these discussions were the instrumentation and controls for the Indian scope of supply.

To learn more about ITER's Cooling Water System click here...

http://www.iter.org/newsline/151/473-Warren Curd, Cooling Water Section Leader
René Raffray, Leader of the ITER Blanket Section, has been appointed as the new Leader of the Blanket Integrated Product Team (BIPT). He is taking over from Doug Loesser who is stepping down after having successfully led the BIPT since its implementation in early 2009.

The BIPT includes participation from six of the seven ITER Domestic Agencies (DAs) - China (CN), the European Union (EU), Japan (JA), the Russian Federation (RF), South Korea (KO), and the USA (US). The seventh ITER DA, India, is not involved in the blanket procurement. René Raffray will be leading the BIPT effort toward its next major milestone: taking the design of ITER's blanket system from the Conceptual Design Review performed last February to the Preliminary Design Review planned for the second half of 2011.

The blanket system comprises three major components: the First Wall (FW), which faces the plasma and must accommodate the demanding heat and particle fluxes; the Shield Block (SB) at the back providing neutron shielding for the vacuum vessel and coil system; and the Blanket Module Connections (BMC) including the attachment system of the shield block to the vacuum vessel that must support the blanket under the high electromagnetic loads anticipated for various plasma scenarios. Each of these components is to be procured by different DAs (First Wall - EU, RF and CN; Shield Block - CN and KO; Blanket Module Connections - RF).

The activities within the BIPT have been planned to give a key role to the procuring DAs in the design and analysis of these components. "This can create challenging conditions for the coordination of a team with participants in many different geographical locations, but, in the end, will greatly help to smoothen the procurement process itself as it is intended for the procuring DAs to feel a sense of ownership of the design," says Raffray.

http://www.iter.org/newsline/151/471-Sabina Griffith
Bob Guccione, who founded the magazine Penthouse in 1965, died last Wednesday at the age of 79 — and you may wonder why this information is being published in Newsline...

As media all over the world published his obituary, most forgot to mention that Guccione was probably the world's biggest and most committed private investor in fusion technology. It is estimated that the Penthouse magazine founder sank close to $ 20 million of his own money — and we're talking about 1980's dollars — in support of a "compact tokamak" project, a relatively cheap, disposable, miniature fusion device.

Guccione's interest for the project was triggered by Robert Bussard (1928-2007), a fusion scientist and former executive at the US Department of Energy who had been a key player in the development of fusion research in the US.

Bussard claimed that the "compact tokamak" he had designed along with Italian-born physicist Bruno Coppi stood a much better chance of producing commercially viable fusion energy than the "big machines" that were being developed at Princeton and Livermore at that time.

In 1978, when he met Guccione, Bussard was already embittered by years of battling with the Department of Energy to impose his project. The media tycoon's offer to back his research came as a blessing; a joint venture was established and, for six years, Guccione's money was to feed research into the tokamak project — the so-called Riggatron in reference to the Washington Riggs Bank who was also a partner in the project.

Guccione and Riggs' money however was not enough to keep the Riggatron project afloat. By 1984, writes author Robin Herman in her book The search for endless energy, "Bussard's dream and Guccione's gamble were crushed [...] Only national governments possessed the resources and the freedom to invest in research projects at such a basic stage and with such expensive tools."

As Guccione went back to his "Pet of the Month", Bussard to new fusion projects like the IEC Polywell, and Coppi to the MIT Department of Physics, the Riggatron was soon forgotten and became a mere footnote in the history of fusion research.

That is... until the month of May 2010, when Italy and Russia signed a "memorandum of understanding" to cooperate in the construction of a fusion device named IGNITOR, a compact high-field tokamak much like the Riggatron, and another controversial brainchild of physicist Bruno Coppi.

"Guccione," Coppi said in a recent interview to the online ScienceInsider, "contributed to a line of scientific work which has proved sound."

Whatever IGNITOR's destiny, it will be a part of his unexpected legacy.

http://www.iter.org/newsline/151/468-Robert Arnoux
Fusion is the process that powers the sun and other stars. This photo shows an artist's depiction of a giant solar flare on the red dwarf star EV Lacertae. Credit: Casey Reed/NASA

http://www.iter.org/newsline/151/461