IC Power Source System for ITER – Indian In-kind Contribution

A. Mukherjee,
On behalf of ITER-India

6th ITER International School.
Ahmedabad, India, 02-06 Dec 2012
IC H&CD System for ITER
- Functional Requirements & Layout
- Main Features & sub-systems

IC Power Source System
- Scope & Deliverables
- Functional specifications & Design consideration
- Technical Challenges involved
- R&D Activity
- Test facility
IC H & CD System for ITER
ITER require 20MW of ICRF power to a variety of ITER plasmas (with emphasis on D-T operation), in quasi-CW operation (pulses up to 3600 s with 25% duty cycle)

- It covers a broad range of magnetic field operation
- Major requirements are for heating plasmas & driving plasma current
- It will perform IC wall conditioning at low power between main plasma shots
- System will be resilient to rapid antenna loading variations (L→H transitions, ELMs)
ITER IC H&CD Scenarios

<table>
<thead>
<tr>
<th>Resonance</th>
<th>MHz</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\Omega_T = \Omega_{^3\text{He}}$</td>
<td>53</td>
<td>Second harmonic tritium + minority heating of ^3He to optimize ion heating (Nominal $B_T = 5.3T$)</td>
</tr>
<tr>
<td>FWCD</td>
<td>55</td>
<td>On axis current drive (Nominal $B_T = 5.3T$)</td>
</tr>
<tr>
<td>$\Omega_{^3\text{He}}$</td>
<td>45</td>
<td>Minority ion current drive at sawtooth inversion radius (outboard) (Nominal $B_T = 5.3T$)</td>
</tr>
<tr>
<td>$\Omega_{^3\text{He}}$</td>
<td>40 - 55</td>
<td>Minority heating of ^3He in H, D, ^4He or DT ($B_T = 3.7$ to $5.3T$)</td>
</tr>
<tr>
<td>Ω_H</td>
<td>40 - 55</td>
<td>Minority heating of H in D, He or DT at reduced magnetic field (2.5 to 3.8T)</td>
</tr>
</tbody>
</table>

‘Progress in the ITER Physics Basis’, Nucl. Fusion 47 6, June 2007

Freq. for RF Source: 35-65 MHz
Radio Frequency ranges from 30 kHz to 300 GHz

ICRF falls in VHF band
RF power to antenna via Tx-line & Matching

\[
\frac{1 + \sqrt{\frac{P_R}{P_F}}}{1 - \sqrt{\frac{P_R}{P_F}}}
\]

VSWR (Voltage Standing Wave Ratio):

\[\rho \text{ (reflection coefficient)} = \frac{V_r}{V_f} \text{ or } \frac{I_r}{I_f}\]

VSWR = \frac{(1 + \rho)}{(1 - \rho)}
A: Terminated in Zo

\[\rho = \frac{Z_o - Z_o}{Z_o + Z_o} = 0 \]

B: Short Circuit

\[\rho = \frac{0 - Z_o}{0 + Z_o} = -1 \]

C: Open Circuit

\[\rho = \frac{\infty - Z_o}{\infty + Z_o} = 1 \]
Line diagram of IC system
System procurement: under 4 packages

- **Antennas**: EU DA, “Build to print”
- **Transmission lines and matching systems**: US DA, Functional Specifications.
- **RF sources**: IN DA, Functional Specifications
- **HV Power Supplies**: IN DA, Functional Specifications, + IO (part of HVPS).
Antenna Port Plug:

- Broadband (40-55MHz) antenna arrays will be installed in 2 equatorial ports (#13 & #15) having 20 MW capability
- Having two antennas
 - strongly reduces risks associated with
 - Very large uncertainties on the edge density profiles, hence on antenna coupling to the plasma
 - RF voltage stand-off (reduced risk of arcing)
 - RF current (i.e. dissipation) limit in CW
 - Allows dual frequency operation
 - Possibility of future up-gradation to 40 MW
Main Features of ITER IC H&CD System

Tx-line & Matching network:

- Provide efficient power transfer
- Coaxial transmission lines and matching/tuning system to minimize power transfer losses
- Pressurized lines transmit up to 6 MWs per line
- ~ 1.5 km of line – 8 sources to 16 antenna feeds

- Matching network:
 - Pre-matching system (reduces VSWR below 4),
 - Decouplers (reduces mutual coupling between antenna straps & improves matching)
 - Main Matching Unit (2 stubs: reduce VSWR < 1.5) + Hybrid splitter units (split RF power & provide ELM resilience by diverting reflected power towards DL)
RF power sources

- 9 nos. of RF power sources: 4 sources/antenna + 1 spare
- Each power source will have capability of handling
 - 2.5 MW @ VSWR 2.0 / 35-65 MHz/CW
 - 3.0 MW @ VSWR 1.5 / 40-55 MHz/CW
- Each source is made of 2 // amplifier chains (tube based) with a λ/4 combiner
- Dynamic control of Va to handle VSWR condition

High Voltage Power Supplies

Regulated 27kV/190A common supply for 2 amp. stages (2 no. of HVPS/source):
- Large number of low-voltage (<1 kV) modules stacked in series,
- Can be switched on/off individually for fine regulation of output voltage
Control System:

- Each IC H&CD subsystem includes a local controller.
- Plant Control System (PCS) manages the overall operation, safety and protection:
 - Coordination, synchronization
 - RF power feedback control
 - Conventional control functions, dispatching of all interlocks and safety control functions internal and external to the system
IC Power Source System
Scope includes
- Design, manufacturing, assembly & testing, packaging & shipment, site commissioning & site acceptance of 1 prototype + 8 RF Sources

Scope & Deliverables
This package is under Functional Specification

<table>
<thead>
<tr>
<th>Major sub-system</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power RF section</td>
<td>9 sets</td>
</tr>
<tr>
<td>Pre-driver stage amp.</td>
<td>9 sets</td>
</tr>
<tr>
<td>Driver stage amplifier</td>
<td>9 sets</td>
</tr>
<tr>
<td>Final stage amplifier</td>
<td>9 sets</td>
</tr>
<tr>
<td>Auxiliary power supplies</td>
<td>9 sets</td>
</tr>
<tr>
<td>Combiner + DL (250kW)</td>
<td>9 sets</td>
</tr>
<tr>
<td>RF Electronics</td>
<td>9 sets</td>
</tr>
<tr>
<td>Local Control Unit (LCU)</td>
<td>9 sets</td>
</tr>
<tr>
<td>Interconnecting Tx-line</td>
<td>As needed</td>
</tr>
<tr>
<td>Internal cooling distribution</td>
<td>As needed</td>
</tr>
<tr>
<td>Test rig without 3 MW DL</td>
<td>1 set</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Parameters</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Nominal O/P power / Duty Cycle</td>
</tr>
<tr>
<td>2</td>
<td>VSWR with any phase (0 – 360(^0))</td>
</tr>
<tr>
<td>3</td>
<td>Transient VSWR ((\Delta t \sim 1) s) max, 10% duty cycle</td>
</tr>
<tr>
<td>4</td>
<td>Accuracy of the output power</td>
</tr>
<tr>
<td>5</td>
<td>Frequency range covered</td>
</tr>
<tr>
<td>6</td>
<td>Frequency deviation over any central frequency (1 dB point)</td>
</tr>
<tr>
<td>7</td>
<td>Power modulation range</td>
</tr>
<tr>
<td>8</td>
<td>Electrical efficiency</td>
</tr>
<tr>
<td>9</td>
<td>Max. frequency modulation frequency</td>
</tr>
<tr>
<td>10</td>
<td>Maximum AM frequency</td>
</tr>
<tr>
<td>11</td>
<td>Maximum phase modulating frequency</td>
</tr>
<tr>
<td>12</td>
<td>Emergency Power shut down</td>
</tr>
<tr>
<td>13</td>
<td>Level of harmonics (dBc)</td>
</tr>
</tbody>
</table>
Design consideration

- Constant CW output power (2.5 MW) even with VSWR 2 – final stage tube shall withstand such stringent load condition
- Thermal capability of components/subsystems for CW operation (3600s)
- Large power modulation range: 2 kW – 2.5 MW
- 1 dB breakpoint at ± 1 MHz over any central frequency
- Real time control of Amp, Phase & Frequency
• No single high power tube exists as per ITER requirement
• 1 RF Source: Two independent chain of amplifiers + combiner

Amplitude & Phase detection module

All power stages: mechanically adjustable I/P and O/P cavities
Possibility of Phasing

PHASING DETAILS FOR ONE ANTENNA CONNECTED TO FOUR RF SOURCES

- **RF Switches**
- **1x4 Splitter**
- **Master Synthesizer (Triple Output)**

Synchronization Pulse (typically 1 MHz)

- **PS1 - 0**
 - Output of RFPS1 with phase 0 deg.
- **PS1 - 30**
 - Output of RFPS2 with phase 30 deg.
- **PS1 - 60**
 - Output of RFPS3 with phase 60 deg.
- **PS1 - 90**
 - Output of RFPS4 with phase 90 deg.
Active device for high power amplifier in MHz frequency range

Tetrodes (4 active electrodes) are often used as active device

\[V_r = V_{dc} - V_{a_{peak}} \]

\[\eta = \left(\frac{p}{V_{dc} \times I_{a_{av}}} \right) = \frac{V_{a_{peak}} \times I_{a_{peak}}}{2 \times V_{dc} \times I_{a_{av}}} \]
The Diacrod is a double ended Tetrode – TH628 Diacrod from TED is like 2 halves TH525 put together

Theoretical curve shows that Diacrod TH628 can deliver in ITER freq. range:
- 2 MW CW on VSWR = 1.5
- 1.5 MW CW on VSWR = 2
• Diacrode will have 2 output cavities whereas Tetrode will have 1

• Diacrode
 • Allow to adjust the position of the voltage antinode in the resonant circuit formed by the tube and its cavity
 • Possibility of reduction of RF losses, increase in RF peak power, pulse duration & frequency

Maximum RF voltage & Minimum RF current in the middle of the active part.

![Diagram of Tetrode vs. Diacrode showing maximum RF voltage and minimum RF current in the middle of the active part.](image)
Status of Tetrode / Diacrode development

<table>
<thead>
<tr>
<th>ITER Spec</th>
<th>CPI, USA</th>
<th>Thales, EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 MW at 2 VSWR</td>
<td>~1.9 MW /300 s tested on matched load</td>
<td>1 MW /24 hrs. on matched load</td>
</tr>
<tr>
<td>2000 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 % - 60 %</td>
<td>> 60 %</td>
<td>> 60%</td>
</tr>
<tr>
<td>35 – 65 MHz</td>
<td>30 – 60 MHz</td>
<td>200 MHz</td>
</tr>
</tbody>
</table>

Demonstration of 2.5 MW CW RF power / source @ VSWR 2 (35 – 65 MHz) at any phase angle with other stringent requirements is very challenging

Tetrode Developed by CPI

Diacrode Developed by Thales
Technical Challenges involved

• Combined high power & high VSWR are challenging, even for single chain of amplifiers
• CW aspect of the operation further constrains the design as efficient cooling is required for all components
• Broad frequency range associated with accurate instantaneous bandwidth (± 1 MHz at 1 dB point) requires specific designs for the tube input and output cavities
• Operational problems like, settling time of anode voltage, excess anode dissipation etc., during mismatch situation
• Unwanted oscillation & mode generation during operation
• Real time control of Amp, Phase & Frequency

To address major issues
Tube qualification phase using single chain (R&D) experimentation 1.5 MW / 3600s / 35 - 65 MHz at VSWR 2.0 with any phase of reflection coefficient launched
Final stage is being developed with industrial partner using both kind of technologies (i.e. Tetrode & Diacrode).

- Tubes and cavities will be integrated in a full amplifier chain developed by ITER-India.
- Tests under ITER specifications will validate each design.

Amplification: mW to MW ~ 90 dB gain
Gain & Power Level

<table>
<thead>
<tr>
<th>Modules</th>
<th>Max. Gain</th>
<th>Expected Gain</th>
<th>Input Power Level</th>
<th>Max. Output Power Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPA (wide band solid state)</td>
<td>50dB</td>
<td>50-45dB</td>
<td>3-10mW</td>
<td>300W /chain</td>
</tr>
<tr>
<td>HPA-1 (TH595/4CW25000B)</td>
<td>20dB</td>
<td>17-18dB</td>
<td>240-190W</td>
<td>15kW /Chain</td>
</tr>
<tr>
<td>HPA-2 (TH781/4CW150000E)</td>
<td>14dB</td>
<td>12-13.5dB</td>
<td>8.0-5.6KW</td>
<td>125kW /Chain</td>
</tr>
<tr>
<td>HPA-3 (TH628/4CM2500KG)</td>
<td>14dB</td>
<td>11-13.5dB</td>
<td>120-67KW</td>
<td>1.5MW /Chain</td>
</tr>
</tbody>
</table>
Typical tube specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pre-driver Stage (HPA-1)</th>
<th>Driver Stage (HPA-2)</th>
<th>Final Stage (HPA-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Tetrode</td>
<td>Tetrode</td>
<td>Tetrode/Diacrode</td>
</tr>
<tr>
<td>Max. CW Frequency</td>
<td>110MHz</td>
<td>110MHz</td>
<td>130MHz/200MHz</td>
</tr>
<tr>
<td>Filament Voltage</td>
<td>6.3±0.3V</td>
<td>15.5±0.75V</td>
<td>15.5±0.75V/30V</td>
</tr>
<tr>
<td>Filament Current</td>
<td>160A</td>
<td>215A</td>
<td>640A/960A</td>
</tr>
<tr>
<td>Plate Voltage</td>
<td>10.0kVdc</td>
<td>22.0kVdc</td>
<td>27.0kVdc/30kVdc</td>
</tr>
<tr>
<td>Plate Current</td>
<td>6.0Adc</td>
<td>20Adc</td>
<td>190Adc/220A</td>
</tr>
<tr>
<td>Plate dissipation</td>
<td>25kW</td>
<td>150kW</td>
<td>2.5MW/1.8MW</td>
</tr>
<tr>
<td>Screen Voltage</td>
<td>2.0kV</td>
<td>2.5 kV</td>
<td>2.5kV/2.0kV</td>
</tr>
<tr>
<td>Screen Dissipation</td>
<td>450W</td>
<td>1750W</td>
<td>20.0kW/14.0kW</td>
</tr>
<tr>
<td>Con. grid voltage</td>
<td>-650V</td>
<td>-1500V</td>
<td>-2000V/-1000V</td>
</tr>
<tr>
<td>Con. grid dissipation</td>
<td>200W</td>
<td>500W</td>
<td>8.0kW/4.5kW</td>
</tr>
</tbody>
</table>
Influence of VSWR

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RT (Tube Load)</th>
<th>Power in kW</th>
<th>VSWR</th>
<th>Fixed Vr</th>
<th>Theta</th>
<th>Va(dc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87.5</td>
<td>1500</td>
<td>2</td>
<td>3000</td>
<td>0.5</td>
<td>25912.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reflection angle (fi) (Degree)</th>
<th>R (Ohm)</th>
<th>X (Ohm)</th>
<th>Iavg (A)</th>
<th>Va (rms Peak Volt)</th>
<th>Va(dc) (Estimated Volt)</th>
<th>Va(dc) (Fixed Volt)</th>
<th>Pd (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>175.00</td>
<td>0.00</td>
<td>83.40</td>
<td>22912.88</td>
<td>25912.88</td>
<td>25912.88</td>
<td>660.93</td>
</tr>
<tr>
<td>45</td>
<td>121.58</td>
<td>64.48</td>
<td>100.05</td>
<td>21617.97</td>
<td>24617.97</td>
<td>25912.88</td>
<td>1092.52</td>
</tr>
<tr>
<td>90</td>
<td>70.00</td>
<td>52.50</td>
<td>131.86</td>
<td>18114.22</td>
<td>21114.22</td>
<td>25912.88</td>
<td>1916.73</td>
</tr>
<tr>
<td>135</td>
<td>49.15</td>
<td>26.06</td>
<td>157.36</td>
<td>13744.58</td>
<td>16744.58</td>
<td>25912.88</td>
<td>2577.62</td>
</tr>
<tr>
<td>180</td>
<td>43.75</td>
<td>0.00</td>
<td>166.79</td>
<td>11456.44</td>
<td>14456.44</td>
<td>25912.88</td>
<td>2821.86</td>
</tr>
<tr>
<td>225</td>
<td>49.15</td>
<td>-26.06</td>
<td>157.36</td>
<td>13744.58</td>
<td>16744.58</td>
<td>25912.88</td>
<td>2577.62</td>
</tr>
<tr>
<td>270</td>
<td>70.00</td>
<td>-52.50</td>
<td>131.86</td>
<td>18114.22</td>
<td>21114.22</td>
<td>25912.88</td>
<td>1916.73</td>
</tr>
<tr>
<td>315</td>
<td>121.58</td>
<td>-64.48</td>
<td>100.05</td>
<td>21617.97</td>
<td>24617.97</td>
<td>25912.88</td>
<td>1092.52</td>
</tr>
<tr>
<td>360</td>
<td>175.00</td>
<td>0.00</td>
<td>83.40</td>
<td>22912.88</td>
<td>25912.88</td>
<td>25912.88</td>
<td>660.93</td>
</tr>
</tbody>
</table>

Plate dissipation variation with VSWR influence keeping plate voltage constant

Tube load & Plate current variation with VSWR influence

Reflection Coefficient Angle (Degree)

Power Dissipation (kW)

Tube Load & Plate Current

Variation in Tube load (Ohm)
Management of excess plate dissipation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RT (Tube Load)</th>
<th>Power in kW</th>
<th>VSWR</th>
<th>Fixed Vr</th>
<th>Theta</th>
<th>Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflection angle (fi)</td>
<td>RT (Variation)</td>
<td>XT (Variation)</td>
<td>Iavg</td>
<td>Va</td>
<td>Va(dc)</td>
<td>Va(dc)</td>
</tr>
<tr>
<td>(Degree) R (Ohm) X (Ohm) (A)</td>
<td>(A) (rms Peak) (Volts)</td>
<td>(Estimated) (Volts)</td>
<td>(Variable) (Volt) (Variable) (kW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>175.00</td>
<td>0.00</td>
<td>83.40</td>
<td>22912.88</td>
<td>25912.88</td>
<td>25912.88</td>
</tr>
<tr>
<td>45</td>
<td>121.58</td>
<td>64.48</td>
<td>100.05</td>
<td>21617.97</td>
<td>24617.97</td>
<td>24617.97</td>
</tr>
<tr>
<td>90</td>
<td>70.00</td>
<td>52.50</td>
<td>131.86</td>
<td>18114.22</td>
<td>21114.22</td>
<td>21114.22</td>
</tr>
<tr>
<td>135</td>
<td>49.15</td>
<td>26.06</td>
<td>157.36</td>
<td>13744.58</td>
<td>16744.58</td>
<td>15500.00</td>
</tr>
<tr>
<td>180</td>
<td>43.75</td>
<td>0.00</td>
<td>166.79</td>
<td>11456.44</td>
<td>14456.44</td>
<td>15500.00</td>
</tr>
<tr>
<td>225</td>
<td>49.15</td>
<td>-26.06</td>
<td>157.36</td>
<td>13744.58</td>
<td>16744.58</td>
<td>15500.00</td>
</tr>
<tr>
<td>270</td>
<td>70.00</td>
<td>-52.50</td>
<td>131.86</td>
<td>18114.22</td>
<td>21114.22</td>
<td>21114.22</td>
</tr>
<tr>
<td>315</td>
<td>121.58</td>
<td>-64.48</td>
<td>100.05</td>
<td>21617.97</td>
<td>24617.97</td>
<td>24617.97</td>
</tr>
<tr>
<td>360</td>
<td>175.00</td>
<td>0.00</td>
<td>83.40</td>
<td>22912.88</td>
<td>25912.88</td>
<td>25912.88</td>
</tr>
</tbody>
</table>

Plate dissipation with VSWR influence keeping plate voltage variable

Plate voltage Variation during VSWR to control excess plate dissipation

Dynamic control of Va

Average power dissipation (kW)
Cases with different tube load

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RT (Tube Load)</th>
<th>Power in kW</th>
<th>VSWR</th>
<th>Fixed Vr</th>
<th>Theta</th>
<th>Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td>1500</td>
<td>2</td>
<td>3000</td>
<td>0.5</td>
<td>26237.90</td>
</tr>
<tr>
<td>reflection angle</td>
<td>RT (Variation)</td>
<td>XT (Variation)</td>
<td>Iavg</td>
<td>Va</td>
<td>Va(dc)</td>
<td>Va(dc)</td>
</tr>
<tr>
<td>(fi) (Degree)</td>
<td>R (Ohm)</td>
<td>X (Ohm)</td>
<td>(A)</td>
<td>(rms Peak) (Volt)</td>
<td>(Estimated) (Volt)</td>
<td>(Fixed) (Volt)</td>
</tr>
<tr>
<td>0</td>
<td>180.00</td>
<td>0.00</td>
<td>82.23</td>
<td>23237.90</td>
<td>26237.90</td>
<td>26237.90</td>
</tr>
<tr>
<td>45</td>
<td>125.06</td>
<td>66.32</td>
<td>98.65</td>
<td>21924.62</td>
<td>24924.62</td>
<td>26237.90</td>
</tr>
<tr>
<td>90</td>
<td>72.00</td>
<td>54.00</td>
<td>130.01</td>
<td>18371.17</td>
<td>21371.17</td>
<td>26237.90</td>
</tr>
<tr>
<td>135</td>
<td>50.55</td>
<td>26.81</td>
<td>155.16</td>
<td>13939.54</td>
<td>16939.54</td>
<td>26237.90</td>
</tr>
<tr>
<td>180</td>
<td>45.00</td>
<td>0.00</td>
<td>164.46</td>
<td>11618.95</td>
<td>14618.95</td>
<td>26237.90</td>
</tr>
<tr>
<td>225</td>
<td>50.55</td>
<td>-26.81</td>
<td>155.16</td>
<td>13939.54</td>
<td>16939.54</td>
<td>26237.90</td>
</tr>
<tr>
<td>270</td>
<td>72.00</td>
<td>-54.00</td>
<td>130.01</td>
<td>18371.17</td>
<td>21371.17</td>
<td>26237.90</td>
</tr>
<tr>
<td>315</td>
<td>125.06</td>
<td>-66.32</td>
<td>98.65</td>
<td>21924.62</td>
<td>24924.62</td>
<td>26237.90</td>
</tr>
<tr>
<td>360</td>
<td>180.00</td>
<td>0.00</td>
<td>82.23</td>
<td>23237.90</td>
<td>26237.90</td>
<td>26237.90</td>
</tr>
</tbody>
</table>

Plate dissipation with VSWR influence keeping plate voltage constant

Tube load & Plate current variation with VSWR influence

- Variation in Tube load (Ohm)
- Variation In Plate current (A)
Management of dissipation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RT (Tube Load) 90</th>
<th>Power in kW 1500</th>
<th>VSWR 2</th>
<th>Fixed Vr 3000</th>
<th>Theta 0.5</th>
<th>Vdc 26237.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflection angle</td>
<td>RT (Variation)</td>
<td>XT (Variation)</td>
<td>Iavg</td>
<td>Va</td>
<td>Va(dc)</td>
<td>Va(dc)</td>
</tr>
<tr>
<td>(fi) (Degree)</td>
<td>R (Ohm)</td>
<td>X (Ohm)</td>
<td>(A)</td>
<td>(rms Peak) (Volt)</td>
<td>(Estimated) (Vol)</td>
<td>(Variable) (Vol)</td>
</tr>
<tr>
<td>0</td>
<td>180.00</td>
<td>0.00</td>
<td>82.23</td>
<td>23237.90</td>
<td>26237.90</td>
<td>26237.90</td>
</tr>
<tr>
<td>45</td>
<td>125.06</td>
<td>66.32</td>
<td>98.65</td>
<td>21924.62</td>
<td>24924.62</td>
<td>24924.62</td>
</tr>
<tr>
<td>90</td>
<td>72.00</td>
<td>54.00</td>
<td>130.01</td>
<td>18371.17</td>
<td>21371.17</td>
<td>21371.17</td>
</tr>
<tr>
<td>135</td>
<td>50.55</td>
<td>26.81</td>
<td>155.16</td>
<td>13939.54</td>
<td>16939.54</td>
<td>16939.54</td>
</tr>
<tr>
<td>180</td>
<td>45.00</td>
<td>0.00</td>
<td>164.46</td>
<td>11618.95</td>
<td>14618.95</td>
<td>15500.00</td>
</tr>
<tr>
<td>225</td>
<td>50.55</td>
<td>-26.81</td>
<td>155.16</td>
<td>13939.54</td>
<td>16939.54</td>
<td>16939.54</td>
</tr>
<tr>
<td>270</td>
<td>72.00</td>
<td>-54.00</td>
<td>130.01</td>
<td>18371.17</td>
<td>21371.17</td>
<td>21371.17</td>
</tr>
<tr>
<td>315</td>
<td>125.06</td>
<td>-66.32</td>
<td>98.65</td>
<td>21924.62</td>
<td>24924.62</td>
<td>24924.62</td>
</tr>
<tr>
<td>360</td>
<td>180.00</td>
<td>0.00</td>
<td>82.23</td>
<td>23237.90</td>
<td>26237.90</td>
<td>26237.90</td>
</tr>
</tbody>
</table>

Plate dissipation with VSWR influence keeping plate voltage variable

Plate voltage Variation during VSWR to control excess plate dissipation

Diagram:
- **Pd with variable plate voltage (kW)**
- **Pd with fixed Plate voltage (kW)**
Cavity design for Input & Output

Input cavity

RF input

Coupling capacitor

Z1

Z2

Second tuning

First tuning

C_G1

C_FK

Output cavity

Tetrode

C_A

Primary tuning

Secondary tuning

C_A-G2

Primary to Secondary coupling

Load coupling

Z1

Z2

Z3

Z4

Load

No. of motors for each chain = 18
Tuning ≤ 180 sec.
Power Supply requirements

HPA-1

- **Anode PS**
 - Voltage: 6.5 kV DC
 - Current: 5 Amp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P @ 5 kV
 - Store energy < 10 Joule

- **Screen Grid PS**
 - Voltage: 1.5 kV DC
 - Current: 1 Amp
 - Bleeder: 0.5 Amp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P
 - Store energy < 10 Joule

- **Control Grid PS**
 - Voltage: -800 V DC
 - Current: 500 mAmp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P
 - Store energy < 10 Joule

- **Filament PS**
 - Voltage: 8.8 DC/AC
 - Current: 200 Amp
 - Ramp up / Ramp down: > 5 Min

HPA-2

- **Anode PS**
 - Voltage: 15 kV DC
 - Current: 20 Amp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P @ 18 kV
 - Store energy < 10 Joule

- **Screen Grid PS**
 - Voltage: 2 kV DC
 - Current: 2 Amp
 - Bleeder: 0.5 Amp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P
 - Store energy < 10 Joule

- **Control Grid PS**
 - Voltage: -1000 V DC
 - Current: 1.5 Amp
 - Bleeder: 3.75A @ -500V
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P
 - Store energy < 10 Joule

- **Filament PS**
 - Voltage: 10 V DC
 - Current: 400 Amp
 - Ramp up / Ramp down: 8 Min

HPA-3

- **Anode PS**
 - Voltage: 15.5 - 27 kV DC
 - Current: 190 Amp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P @ 27 kV
 - Store energy < 10 Joule

- **Screen Grid PS**
 - Voltage: 2 kV DC
 - Current: 8 Amp
 - Bleeder: 1 Amp
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P
 - Store energy < 10 Joule

- **Control Grid PS**
 - Voltage: -1000 V DC
 - Current: 6 Amp
 - Bleeder: 10 A @ -500 V
 - Regulation: 1 % Line & Load
 - Ripple: 1 % P-P
 - Store energy < 10 Joule

- **Filament PS**
 - Voltage: 20 VDC
 - Current: 1200 Amp
 - Ramp up / Ramp down: 8 Min
Ref signal for amp, phase & frequency

Interlocking Signal to the Source

PLC based Sequential operational system with safety Interlock
Real time control loop, Fast acquisition & On line monitoring
Fast interlock with pre & post triggering acquisition (<1μsec)
Display module for online & offline analysis
Cavity Tuning for different frequency operation

CODAC

Plant Controller

Local Controller (LC1)

LC2

LC for Tx line & Antenna

LC8
State Diagram for Sequence control

S0 → Off state
S1 → Stand By (Auxiliary On)
S2 → Heater & VG1 ON

S3 → Anode Voltage On
S4 → VG2 ON
S5 → RF ON

S1 Interlock
S2 Interlock
S3 Interlock
S4 Interlock
S5 Interlock
S5-S2 Interlock
S5-S3 Interlock

Command
Command
Command
Command
Command
3MW/3600s/35-65 MHz test setup

Load impedance $Z_T = R + jX$ covers the entire circle
High Power Test Facility

- Equipped with 3 MW test load, HVPS, Aux. PS, Cooling manifold, Tx-line system, Protection & Controls, mechanical tools, RF measuring equipment, radiation meter etc.
- Effective Floor space with additional mezzanine ~16mx16m
- Clear Height > 7.5 m
IC Power Source at ITER-RF building

RF Source enclosure

LCU + LP section

Pre-driver & Driver Stage Amp.

Final Stage Amp.

12”/3MW DC

Pressurized Gas Barrier

DL with Pressurized Gas Barrier

U Bend outside enclosure

Combiner

Note: End of U bend is IN-US Interface
• **RF Source for ITER will cover all scenarios required from operational point of view**
• **Very special design is involved to satisfy major requirements**
• **To identify critical components involved, specially in high power stage, R&D activity has been initiated considering different type of vacuum tubes (Tetrode & Diacrode)**
• **Outcome of R&D phase will lead to establish the technology, capable of delivering the ITER ICRF source specifications with reliability**