Erosion, Contamination, and Migration
Jim Strachan, PPPL

IIS09, June, 2009,

• Perspective:
 – Use the JET methane gas injection experiments to understand JET carbon impurity source, contamination, and migration. Then use these studies to relate to ITER

• Outline:
 – 1. JET carbon sources
 – 2. JET carbon contamination
 – 3. JET carbon migration
 – 4. Relate to ITER
Impurity sources

• Status of existing tokamak studies: still uncertainty about which sources dominate the contamination

• Generally expect:
 – Wall sources
 • Core neutral CX bombardment
 • SOL ion bombardment
 • ELMs, filaments, and disruption events
 • RF accelerated ions
 – Divertor sources
 • Ion bombardment along the targets is dominant

• Release rates in JET seem factor-of-two in agreement with chemical sputtering rates
Impurity Influx from 3D Sources

- Upper Dump Plate
- Inner Wall Guard Limiters
- Inner Wall Cladding
- Restraint Ring Protections
- Poloidal Limiters
- Re-ionisation Protections
- Magnetic covers
- B&C tiles
- Saddle Coil Protections
- Divertor
- Saddle coil protection
- Mushrooms
- Normal NBI Inner Wall GL’s
- Normal NBI IW Cladding
- LH + ICRH Protection
- Inconel+8µm Be
- Bulk W
- W-coated CFC
- Beryllium
- Impurity Influx from 3D Sources
Infra-Red Images indicate plasma contact

Quiescent plasma

Small disruption Disruption
Atomic physics basis for erosion measurement

- Atoms or ions entering a hot plasma will either get ionised (which we cannot see) or become excited and emit a photon (which we can see).
- Ratio of “Ionisations per Photon” is used to turn measured intensity (ph/sec) into erosion rate (ions/sec).
- With increased temperature, the rate coefficient for ionisation increases more strongly than excitation.
- With increased density, step-wise ionisation can play a role.

Visible

VUV

VUV lines strongest. but Better to work with visible wavelengths since accurate calibration achievable and spectra are resolved.

EDGE2D/NIMBUS calculates fluid motion of SOL plasma

EDGE2D calculates 2-dimensional electrons, deuterium ions, and each carbon charge state in the cells of the grid connecting each by either parallel or perpendicular transport.

NIMBUS calculates Monte Carlo deuterium molecules, and atoms, as well as carbon atoms, on a mesh which fills the machine volume.
CIII light indicates intrinsic C Influx

- Impurity content result of 3 processes: sources, screening, and confinement
- DIVIMP related CIII light to Γ_C
- Divertor sources larger than wall sources
- divertor sources increase with applied power
- L-Mode: wall sources increase and divertor sources decrease with density
C3H provides a good approximation to the carbon ionization in the SOL
Experimentally, the Yield is defined by the ratio of carbon to deuterium Light. EDGE2D, indicates that this ratio correlates with the Carbon to deuterium ionization rates in the SOL
SOL ionization rates: D rate is similar for EDGE2D, JET L-Mode, and JET Inter-ELM H-Mode, with experiment extending to higher values. C rate is similar for EDGE2D and L-Mode but higher for H-Mode
Compare to Experiment:

JET L-MODE plasmas have CIII signals like a uniform wall source
Outline

1. JET carbon sources
 • C/D light can measure sputtering rate
 • Narrow selection of discharges to infer sputtering
 • Chemical sputtering of carbon is important
 • Factor-of-two agreement with published sputtering coefficients
 • ELM is major difference between L & H Mode but other differences do exist

2. JET carbon contamination
3. JET carbon migration
4. Relate to ITER
Contamination

• We reached some level of understanding about the JET carbon contamination during quiescent plasma, which are not
 – too close to the walls,
 – High triangularity (close to the top) and
 – with ICRF

• Understanding probably does not extend to ITER due to unknown physics origin of SOL flows, ITER interaction at vessel top, and W/Be (not C) composition of ITER components
C$^{+6}$ measurement by CX spectroscopy

- Charge exchange process populate predominantly $n=Z^{3/4}$
- Use **visible wavelengths** for accurate absolute calibration, high spectral dispersion and good imaging to achieve local measurement.
- Beam stopping and specific ion emission data used to derive concentrations.

![Diagram of angular momentum and main quantum number](image)

<table>
<thead>
<tr>
<th>Angular momentum l</th>
<th>Main quantum number n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Angular momentum l:
 - $l=0$ to $l=7$
- Main quantum number n:
 - $n=1$ to $n=8$
CD₄ puff experiments: Impurity screening

S = Δ N_c / Γ_c τ*: Screening number – Fraction actually entering confined plasma

τ*: Rate of rise of Carbon content Γ_c: Carbon influx applied during experiment

S is ~ 5-10 times lower if injection is in the divertor region.

Main Chamber Carbon Processes

- Diffusion wins near LCFS
- Parallel transport wins at lower temps
- C ionisation in Diffusion region
- Thermal Force blocks C escape
Divertor vs Limiter Screening

- DIVIMP normalised to mid-plane screening (adjusting Carbon D)
- SOL flow influenced top screening
- Inter-ELM H-Mode screening worse than L-Mode, but similar location dependence
Deuterium SOL flow: parallel Mach Number, $M = v_\parallel/c_s$.

Mostly POSITIVE towards inner target.
Magnitude of the applied force is significant, but not dominant. Used a force applied to large major radius, and 2 cm into SOL from separatrix.

Flows similar to normal fields

Flows similar to reverse field

1 cm from separatrix

Red=external force, blue=thermal force, green=friction force
Empirical L-Mode Screening

- mid-plane CD\textsubscript{4} injection
- varied parameters important for intrinsic Z\textsubscript{eff} and/or SOL

- $S \propto \frac{1}{n_e \tau_E}$
- or: $S \propto P q^{1/2}/n_e$
DIVIMP Screening trends

- Higher C diff. Increases access to region of high coupling
- high flows increase connection to divertor
- higher density or lower initial C energy increases the distance from ionisation to LCFS
Predict intrinsic Z_{eff}

$1 + \sum Z(Z-1)n_Z \sim 1 + 30n_C$

Intrinsic C-source
Divertor source = 5-10 x Wall source

Empirical screening
Divertor screening = 5-10 x Wall screening

Carbon source consistent with Carbon dominated Z_{eff}

Lines of sight for intrinsic influx measurements and Bremsstrahlung

Intrinsic Z_{eff} Trends

- L-Mode: $Z_{\text{eff}} = Z_L \propto P^{2/n^{3}}$
- H-Mode: $Z_{\text{eff}} = Z_L H_{89}^{0.9}$
- Impurity confinement probably different between L- and H-Modes
- ELM effects incorporated into H_{89}
Inter ELM H-Mode

- In the limit $t \ll \tau_p$:
 \[S = \Delta \frac{dN_c}{dt} / \Gamma_c \]
- Core CX had less statistical noise and required to measure derivative
- CD_4 and D_2 injection could induce the first ELM
Divertor C source dominates Inter ELM Z_{eff}

- Carbon content rate of rise and divertor carbon influx prop to power flow into divertor
- more C originates from divertor than L-Mode
- Long period ELM plasmas - higher power required higher current
- C accumulation dominates these plasmas
Outline

– 1. JET carbon sources
– 2. JET carbon contamination
 • Contamination measured spectroscopically
 • Carbon fuelling efficiency determined by methane injection
 • Fuelling efficiency determined by carbon ionization closeness to LCFS
 • ELM is important but difficult to understand
– 3. JET carbon migration
– 4. Relate to ITER
migration

- Impurities contaminate the core but individual impurity ion only spends about a confinement time in the core.
- Eventually the impurity travels to some surface, where it can be re-eroded, re-contaminate, etc until it somehow reaches a surface where it is not re-eroded.
- The impurity has migrated from its source location to the non-eroding surface.
Global migration accounting for Carbon on JET

Migration

Erosion → Transport → Deposition

Re-erosion

Global balance for period of operation from 1999-2001, 14 hours of plasma

50400 s, 5748 shots on JET ~ 50 shots on ITER

Carbon films accumulate in remote areas

A layer thickness of 100 μm = 6 10^{20} C/cm2

Extent: 5 cm (poloidal) \times 1600 cm (toroidal)

Corresponds to: 4.8×10^{24} C = 100 gC

P Coad (UKAEA) J Likonen (TEKES)
13C Experiments: inject a marker to locate deposits

13CH$_4$ injected on last day before vent
- Identical pulses, specific plasma conditions instead of complex history
- Remove tiles, perform Secondary Ion Mass Spectroscopy (SIMS) analysis

Injection from the top (2001):
- 45% found at inner divertor

Injection from outer divertor (2004):
- 11% found at inner divertor
- 17% found at outer divertor

P Coad (UKAEA) J Likonen (TEKES) M Rubel (VR)
13C deposition following injection near outer strike point
13C deposition following injection near outer strike point

Also injection from vessel top
13C deposition following injection near outer strike point

Also 12C from campaign
13C deposition following injection near outer strike point
\(^{13}\text{C} \) deposition following injection near outer strike point

Model for top injection
13C deposition following injection near outer strike point

Model for outer strike point injection
13C deposition following injection near outer strike point

Model including leakage from outer div
13C deposition following injection near outer strike point

Model including re-erosion
Deposition on the Reciprocating probe at the vessel top indicate 3 times more 13C deposition on the side facing the outer target and in the direction of the SOL flow. The modeling indicates a different spatial variation possibly indicating re-erosion of the deposited 13C.
^{13}C set to implant in walls
Depth profiles of 13C with small surface deposit and larger penetration into target, are ones with significant re-erosion.
Outline

– 1. JET carbon sources
– 2. JET carbon contamination
– 3. JET carbon migration
 • Migration to remote areas occurs
 • 13C marker experiments have some characteristics of campaign integrated migration
 • Re-erosion is important and occurs where sputtering is high
 • Some features of 13C migration can be understood from initial transit physics
– 4. Relate to ITER
From JET to ITER

<table>
<thead>
<tr>
<th></th>
<th>JET</th>
<th>ITER (Reactor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust Power (MW)</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>Materials</td>
<td>C</td>
<td>Be/W</td>
</tr>
<tr>
<td>Surface Area (m²)</td>
<td>150</td>
<td>500</td>
</tr>
<tr>
<td>SOL temperature (eV)</td>
<td>85</td>
<td>150</td>
</tr>
<tr>
<td>Volume (m³)</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Divertor size (m)</td>
<td>0.3</td>
<td>1.25</td>
</tr>
<tr>
<td>Parallel length (m)</td>
<td>80</td>
<td>170</td>
</tr>
<tr>
<td>Duration (sec)</td>
<td>10</td>
<td>1000</td>
</tr>
</tbody>
</table>

Predicted energy confinement time
Using the EDGE2D calculations which described the JET erosion, contamination, and migration, can also switch to AUG and ITER grids to understand if the same physics governs those machines.
ITER SOL is hotter and narrower than JET, featuring more contact at the vessel top due to the high triangularity of ITER.
EDGE2D calculated carbon ionization in JET, AUG, and ITER, assuming carbon in each machine. Notice ITER has impurity ionization much further from the main chamber.
Impurity fuelling efficiency is a poor calculation for ITER, but does indicate that the divertor fuelling efficiency is much lower for ITER than for JET.

The mid-plane ITER fuelling efficiency is high, but that is due to the 15 MW SOL power and 5 eV C neutrals assumed in order to get the carbon to ionize in the ITER grid.
Scaling the mid-plane fuelling efficiency for ITER (somehow) and averaging the fuelling efficiency over the sputtered surfaces indicates that ITER should have 10-15 times better screening coupled with 10-100 times more sputtering, if composed of carbon.
The final impurity content is calculated to be similar to JET, but worse than the AUG plasma studied, assuming ITER were all carbon.
Impurity flow patterns for JET, AUG, and ITER indicating similar impurity flow reversal for the 3 machines, i.e., ion transport from divertor to main chamber SOL.
One confusing aspect of impurity contamination (or alpha ash removal) studies is its expression as a fuel depletion problem. Actually, the fusion reaction rate depends only upon the reactant densities, and not upon the densities of other particles such as impurities or electrons. However, since plasma electron density is usually measured in plasmas, this has caused us to pretend that other impurity concentrations would deplete the fuel. In reality, additional impurities will increase the electron density but leave the reaction rate unaltered.

\[
P \propto n_D n_T <\sigma v> \text{ for ITER}
\]
Today we model the tokamak deposits starting from the source, its migration to a surface and possible re-erosion.

Instead, with a 100X longer experiment, we will probably ignore the source like we do with snow and sand drifts, and model the ability of the surfaces to shield the deposits.

Snow drifts in Antarctica

Sand dunes in a desert
Deposition in castellated tiles

Tiles from previous JET experiments in 1998

Gaps: 6 - 10 mm
Inventory 30% compared to surface

Grooves:
0.6 mm wide, 10 mm deep,
Inventory 2% compared to surface

Toroidal direction

Sliced to reduce eddy currents
Castellations for stress relief
Outline

– 1. JET carbon sources
– 2. JET carbon contamination
– 3. JET carbon migration
– 4. Relate to ITER
 • Projections from JET are complex
 • Longer duration, higher SOL temperature, plasma contact at the vessel top, different materials, longer scale lengths are all important
 • ELMs and ELM mitigation effects on impurities are difficult topics
 • Larger sources are offset by better screening
 • Expect ITER will be learning as it operates