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Context: Immersed boundary methods
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physicallymotivated

ÅMathematically justified

Volume penalization method is

P. Angot, C.H. Bruneau and P. Fabrie, 1999. 
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Penalized equation:
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Initial Boundary Value Problem
In complex geometry
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(Plus initial conditions)

with Lbeing, e.g. the Laplace operator, or Navier-Stokes or Maxwell operator



Penalized problem in simple geometry
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Discretized penalized problem
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Some analysis: a simple example
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Exact solution of the penalized 
1d Poisson equation
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Penalization term



Exact solution of the penalized 

1d Poisson equation (3)

Exact penalized solution (left) for m=2 and its first (center) and 

second (right) derivatives.
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Penalization error of the Dirichlet problem

Using the exact solution of the penalized problem the leading 

order L² error with respect to the Dirichlet problem is given by

where the   behavioris consistent with previous studies

by Angot et al., 1999 and Carbouand Fabrie, 2003.
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Discretization error of the penalized equation

The penalized problem is discretizedwith a pseudospectralFourier

methodusing N grid points. For the L² error between the discrete 

solution and the exact solution of the penalized problem we get,

where K=2 for meven and Kº3.84 for modd.

The N-2 behavior is related to the regularity the exact 

penalized solution as observed by Min & Gottlieb 2003 

for elliptic equations with discontinuous coefficients.
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How to choose h?

Combining the two estimates we get a bound for the total error e

between the discrete-penalized solution and the exact solution

of the Dirichlet problem:

which suggests that the penalization method with Fourier 

discretizationis a first order method.

When his chosen with the right order of magnitude, i.e. h 1́/N,

in order to optimize the preceding estimate, then the resulting error is
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Convergence of the Fourier collocation method

Error with respect to the exact Dirichlet solution in the interior of  

the fluid domain (left) and with respect to the penalized solution

in the whole domain (right).
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The volume penalization method 

for fixed (and moving) obstacles

Navier-Stokes equations
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Two- and three-dimensional formulations

Two-dimensional model:
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Numerical method

ÅPseudo-spectral Fourier 

discretization in space

(periodic boundary conditions)

Fast Fourier Transform

ÅExact integration of the viscous term 

(method of integrating factors)

ÅAdaptive 2nd order Adams-Bashforth 

time-stepping scheme
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Ref.: K. Schneider, 2005. Comput. Fluids34

D. Kolomenskiyand K. Schneider, 2009. J. Comput. Phys.228
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Application to

2d confined turbulence



20



2d decaying turbulence in a circular domain

Ref.: K. Schneider and M. Farge, Phys. Rev. Lett., 95(24), 2005

Vorticity,

N=10242
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