Actuators and Sensors for tokamak control

by **George Sips**

ITER International Summer School On Plasma Operation Scenarios and Control

UCSD, San Diego

July 28, 2022

Outline – Sensors and Actuators for Control

- 1. Sensor processing and RT networks
- 2. Magnetic sensors, reconstruction and control
- 3. PFC power loads and prevent overheating
- 4. Density and fuel control

5. Actuators

- ✓ PF coils, I_p, B_t, 3D-coils, gas/pellets, NBI, ECH, ICRH, RF
- 6. Current profile control?
- 7. Discharge phases (e.g. plasma formation)
- 8. Key take aways...

25 mins

20 mins

1. Sensor processing and RT networks

RT systems for plasma control

- I. All sensors & diagnostic data go into <u>one</u> RT control/server system
 - ✓ Connection of sensors and actuators
- II. Outsource processing \rightarrow results going to RT server and core system
 - ✓ Expandable RT system, leave core intact
 - ✓ Dedicated (more secure) nodes for protection

Both can include plasma models and simulation tools

RT Network Options - Central v. Distributed Processing

I - One integrated system

II- Dedicated outsourced nodes

2. Plasma equilibrium

Magnetic sensors, reconstruction and control

- Reconstruction challenges:
 - 1. DIII-D: RT EFIT
 - 2. JET: XLOC
 - 3. AUG: FP (training database)
- Assisting magnetic control (

✓ RF coupling, strike point power locations, CCD cameras

Real time equilibrium reconstruction and control

Magnetic sensors, reconstruction and control

• **DIII-D:** Overview of MIMO isoflux control scheme using RT-EFIT

M.L. Walker et al., Fusion Engineering and Design 56–57 (2001) 727–731

JET – Plasma Boundary – Control

Magnetic sensors, reconstruction and control

- JET has an "Iron core" transformer, making reconstruction more CPU consuming
- JET: XLOC
- Vacuum extrapolation of LCFS – XLOC
- 5-12 mm difference with offline EFIT
- Routines (S-integrals) for real-time β_{N} and I_i

O. Barana et al, 2004 Nucl. Fusion 44 335

ASDEX Upgrade – Plasma Boundary and Control

Magnetic sensors, reconstruction and control

- AUG: Function Parametrization (training database)
 - Large equilibria data set with different shapes pressure and current profiles
 - Mapping magnetic sensors and PF coils
- Inversion matrix from magnetic sensors & PF coils to plasma boundary, pressure, q-profiles
 - Very fast (<< 1 ms)
 - Detect sensor failure
 - o But inversion matrix unique
 - \circ Poor core q(r) resolution

George Sips/ITER Summer School/Actuators & Sensors for Control/July 28, 2022

Vertical stabilization control requires faster control

- Usually implemented as separate loop, with commands in higher spectral range ("spectral decoupling")
- Allows lower cost coils and power supplies for slower shape+Ip control

Decoupling of the control actions

Mutual inductance of PF coils

 Provide a linear response to a control gap with effects on other gaps or coils compensated (decoupled)
 JET Pulse No: 86107

JET

Other sensors for shape control

Assisting control

- CCD camera imaging
- RF coupling resistance
- Strike point power
- Reflectometry (see later)

3. Protecting the wall/divertor - Sensors

Be & W components of the "ITER-like" wall at JET require a reliable protection system to avoid damage - due to Be melting or cracking of W (thermal fatigue): A. Huber et al, Nucl. Fusion 58 106021 (2018)

- Imaging diagnostics in the Near Infra-Red (Sensors)
 - \checkmark Covering 2/3 of the main chamber and $\frac{1}{2}$ of the divertor
 - \checkmark RT processing to convert raw data
- Dedicated & robust Real-time system (outside, but connected to the PCS)
 - Protecting regions of interest (ROI's)
 - Hot spot validation (e.g. false hot spots)

The JET ITER-like wall

- Solid beryllium
- Beryllium-coated Inconel
- Solid (bulk) tungsten
- Tungsten-coated carbon fibre composite tiles.

Operation started in 2011

All components are inertially cooled \rightarrow power handling determined by heat capacity and incident power levels (T_{surface})

A. Huber et al, Nucl. Fusion 58 106021 (2018)

Surface temperature limits

- Avoid melting of beryllium (1287 °C) with a protection level at ~950°C
- Avoid delamination of W-coated tiles above 1200°C
- Keep bulk-W below re-crystallization threshold < 1200°C

Accuracy required: +/- 50 °C → near infrared (NIR), which has an error as low as 2% in these temperature ranges

A. Huber et al, Nucl. Fusion 58 106021 (2018)

Near Infrared (NIR) measurements

Reliable measurements of T_{surface} are only possible when the background is low:

Thermal emissions
 >> Plasma bremsstrahlung
 & free-bound emissions

Conventional optics around 1000 nm (1µm)

A. Huber et al, Nucl. Fusion 58 106021 (2018)

NBI testbed data of ε at 1 μ m:

- Beryllium: $\epsilon=0.25$
- W-coatings: ε=0.6

NIR digital cameras

Every 20ms

Coverage:

- 66% of main chamber
- 43% of divertor

Relay and endoscope systems

A. Huber et al, Nucl. Fusion 58 106021 (2018)

Alarm temperature thresholds:

Beryllium

Bulk W

Beryllium: 925°C for Be to avoid the Be melting W-coated CFC: 1105°C to avoid the damage of the coatings Bulk W: 975°C to avoid recrystallization (recrystallization temperature for tungsten of ~1200°C) Inconel+8um Be: 900°C to avoid formation of intermetallic phases

A. Huber et al, Nucl. Fusion 58 106021 (2018)

1200 **In-vessel** JET • KL11-P1DA NIR camera calibration KL1-P4DA NIR Camera 1100 using a source KL1-P4DB NIR Camera × KI2D-P8TB NIR camera at 1µm **U** 1000 KL2D-P8TA NIR camera KL11-P1DB NIR camera Deployed with Temperature 900 the JET in-vessel 800 remotehandling arm 700 600 1100 600 700 800 900 1000 1200 IR Camera Temperature [°C]

George Sips/ITER Summer School/Actuators & Sensors for Control/July 28, 2022

Example of using IR data in the Divertor

Divertor IR data (JET)

- Effect of strike point sweep
- Reduces surface temperature
- Can start sweeping when surface temperature goes above certain threshold level
 - ✓ Or move strike to different location (within preset limits)

Divertor IR data (JET)

Measured surface temperature of the W-coated outer divertor target

Strike point on a "deposition layer" that has poor thermal contact \rightarrow rapid T_{suface} rise at the same strike position

Baseline temperature reaches alarm level @ $1100 \circ C$ for > 400ms – heating is stopped

4. Density and fuel control - Sensors

Density and fuel control

- Simple and robust interferometry (also protection)
- Fuel ratio (D-T)
- More advanced (Thomson scattering profile, edge density, peaking)
- Model for fueling actuators

Density and fuel control - Sensors

Real-time density measurements

• Simple and robust measurements

M.A. van Zeeland, Rev. Sci. Instrum. 89, 10B102 (2018)

ITER prototype interferometry measurements for n_edl demonstrated. Also provides Faraday rotation angle \rightarrow j(r)

Density and fuel control - sensors and actuators

Fuel content Measurements

- Edge visible spectroscopy (H_{α} , D_{α} , T_{α})
- Neutron diagnostics (core)
- Novel: Fast wave interferometry

George Sips/ITER Summer School/Actuators & Sensors for Control/July 28, 2022

Density and fuel control - Sensors

RT density/temperature

- Thomson scattering data at 60Hz
- Analyses independent of the PCS

Derivative parameters:
 ✓ Edge n_e, n_e peaking

F. M. Laggner, Rev. Sci. Instrum. 90, 043501 (2019)

Density and fuel control - Edge density

Control of the edge density

- A few TS channels near the expected pedestal location are averaged to get an estimate for pedestal density -> density feedback loop
- Used for high-β_p scenario, which has an internal transport barrier

Density control - Model for actuators

Non-linear digital real-time density control in the TCV tokamak

5. Actuators

Main actuators used

- PF coils, I_p
- TF coils, TF ripple
- Non-axisymmetric, 3D coils (RMP)
- Gas & pellets (fueling, pacing, DMS)
- Heating systems:
 - ✓ NBI power, torque
 - ✓ ECRH heating, CD, MHD, pre-ionization (later in this talk)
 - ✓ RF Heating (ions, electrons), CD (ICRH, Helicon, LHCD)

Actuators – PF coils

PF coils for plasma shape, position

DIII-D demonstrated passively stable scenario meeting ITER goals:

- <u>Plasma shape</u>
- G=0.4
- T_e/T_i~0.8
- f_{GW}~0.6
- v*_{ped}~0.6
- Duration: $3\tau_R$
- q₉₅=3.2-3.8
- β_N=1.9-2.3
- Torque: T=-0.5-4 Nm

Actuators – Plasma current (I_p)

May seem trivial – but I_p is an actuator

- Current ramp up/down rate $(\rightarrow j(r))$
- Changes to edge current
- Changing q₉₅ (constant B_t & shape)

More advanced:

In a reactor at constant I_p there is no explicit control of the fusion power gain: \rightarrow Fusion power gain (G₈₉) is explicitly regulated using I_p

 $G_{89} = \beta_N H_{89} / q_{95}^2$

K.E.J. Olofsson, IEEE Conference on Control Technology and Applications (CCTA) (2020)

Actuators – TF coils

TF coils for main B_t value & TF ripple

- Change B_t value during the shot Physics studies & RF resonance location
 ✓ Not an option for ITER
- TF ripple value (JET): 2 sets of 16 TF coils – interleaved \rightarrow Change TF ripple (δ)

ITER: ✓ δ~0.4% @ 2.65T, 5.3T ✓ δ~1.2% @ 1.8T

Non-axis symmetric, 3D coils

DIII-D non-axis symmetric coil-set

- RMP coils (I-coil, thick green)
- Error field correction coils (C-coil, thin red)

R.J. Buttery, Journal of Fusion Energy volume 38, pages 72–111 (2018)

D-T Pellet Injection for ITER Plasma Fueling

ITER Fueling Requirements are a Significant Challenge

- ITER plasma volume is 840m³
- Plasma density > $1 \times 10^{20} \text{ m}^{-3}$
- D-T mixture control
- Gas fueling will be limited by poor neutral penetration
- Pellet injection from HFS
- 1 hour duration
- At high reliability

AUG pellet injection

Density and fuel control - sensors and actuators

Gas & pellets \rightarrow ELM control

- Compute ELM frequency in real time
- Set requested ELM frequency and control ELMs using
 - ✓ Pellet pacing \checkmark Gas injection rate

Or combination

I.T. Chapman et al, **Plasma Phys. Control.**

• For 1.5s the pellets successfully trigger the ELMs and so the injected gas is reduced to zero

George Sips/ITER Summer School/Actuators & Sensors of Common and

NBI as actuator

At DIII-D, NBI system can control

- Power (8 sources at 2.2MW each):
 - ✓ EFIT_W, EFIT_ β_T , EFIT_ β_N , EFIT_ β_p ✓ T_e/T_i, Ti, neutrons
- Current profile (4 off-axis NBI):
 - ✓ EFIT_q₀, EFIT_q_{min}, q₀-q_{min}, ECE position
- Rotation (2 counter NBI in co-counter mix):

✓ Torque input, CER rotation

- Stability (power and q-profile):
 - ✓ β_N/I_i , active MHD Spectroscopy amplitude

ECRH – Main heating system at ITER (24MW)

- **DIII-D:** 7 (1MW) gyrotrons in 2023 10+ gyrotrons in 2025+
- **AUG:** 8 gyrotrons in 2022 (maximize O2, X3 absorption) **Others:** WEST, KSTAR, EAST, ...

DIII-D launch angles

DIII-D

NTMs and ECCD

For NTM control

RT measurements of magnetic island and ECRH/ECCD locations:

- MSE constrained RT equilibria
- RT Thomson Scattering data used by TORBEAM
- Or, ECE radiometer for both island location and ECRH/ECCD deposition
- \rightarrow RT steering of ECH mirror and deposition location

E. Kolemen, Nucl. Fusion 54 073020 (2014)

0.5

Ξ 0.0

-1.0

RF - Ion Cyclotron Resonance Heating

ITER: Ion Cyclotron Resonance Heating @ 20MW

Main fundamental (solid), 2^{nd} harmonic (dashed) and 3^{rd} harmonic (dash-dot) ion cyclotron resonances: (a) $B_0=2.65T$ and f=42MHz; (b) $B_0=2.65T$ and f=53MHz; (c) DT operation at $B_0=5.3T$ and f=53MHz. E. Lerche et al, EFDA-JET-CP(11)04/04 (2011)

RF Current Drive – Lower Hybrid

HFS LHCD being installed at DIII-D

- HFS-LHCD: \rightarrow 1MW (coupled)
 - Ready early 2024 (MIT)
 - o 2MW klystron power

George Sips/ITER Summer School/Actuators & Sensors for Control/July 28, 2022

RF Current drive – Helicon

Helicon at 475 MHz, using a travelling wave antenna to provide off-axis current drive capabilities

- Being developed both at KSTAR and DIII-D
 - ✓ DIII-D, 1.2MW source
 → 0.5-0.8MW coupled ? (2022/23)
 - ✓ Verify technology and current drive predictions

DIII-D

6. q-profile control?

Current profile control

- Forming the q-profile (Ramp-up)
- Self organization
 - ✓ Hybrid Steady state scenario
 - ✓ Standard AT (high-q_{min}≥2)

Non-inductive scenarios

DIII-D advanced the two extrema of the steady-state scenario options for ITER

- Standard AT (high-q_{min}≥2)
- Low q_{min}, steady-state hybrid
 ✓ β_N~3.6, Vloop ~0 for ~2 τ_R
 - \checkmark Limited by NBI duration
 - ✓ Particularly attractive using core current drive
 → fully NI
 - No q-profile control required

George Sips/ITER Summer School/Actuators & Sensors for Control/July 28, 2022

q-profile control?

Steady-state core

High q_{min} ($q_{min} \gtrsim 2$) operation can be achieved with off-axis CD tools

- Fully NI conditions have been achieved at DIII-D in this regime
 - ✓ using preheating during the current rise✓ Off-axis ECCD
- With new CD tools (Helicon and HFS-LHCD) at DIII-D further optimization is possible

✓ No q-profile control required ?

7. Different discharge phase require different controls

When ? – Discharge phases

- Sensor and actuator requirements depend on plasma phase
- Several control phases

Real time recognition of confinement phases \rightarrow Control

ASDEX: H-mode & L-mode (others)

- Using a training data set
- Discriminant Analyses
 → Assigns probability to L-mode or H-mode
- Global variables, <u>not</u> P_L/P_{LH} !

	Number	Variables
Prediction error	2 3 4 5	P_{Ohm}, l_{i} $P_{\text{Ohm}}, I_{p}, \beta_{N}$ $P_{\text{Ohm}}, P_{L}, I_{p}, \beta_{N}$ $P_{L}, I_{p}, \beta_{p}, q_{95}, U_{\text{loop}}$

L. Giannone, A.C.C, Sips et al, Plasma Phys. Control. Fusion 46 835–856 (2004)

ITER- plasma formation (FF)

ITER breakdown

- Feedforward (FF) PF currents, loop voltage
- Gas pressure, evolution or control
- ECH pre-ionization
 & burn-through assist
- After plasma formation:
 - Flux control of plasma position
 - \rightarrow Transition to control phases
 - → Protection circuits (RE, no plasma)

2.0

1.6

1.2

0.8

0.4

-0.4

-0.8

-1.2

-1.6

42 46 5

5.4

5.8

6.2 6.6

Major radius, r (m)

o.0 z-axis

■6 mT

5 mT

=4 mT

3 mT

Stray field [mT]

ITER

7 7.4 8.0

8. What have we "learned" on Sensors and Actuators

- Sensor processing is key to using diagnostic information in real-time systems
 Examples given for magnetic sensors, IR data, density information
- 2. Various techniques for sensor processing are used
- 3. High computation and data reduction can be outsourced
 - ✓ In some cases be "ringfenced" such as the protection of the ITER-like wall at JET
- 4. Actuators are varied sometimes their use can be optimized using model calculations in the control system (gas fueling, ECRH deposition)
- 5. Do not underestimate feedforward use of actuators & keep it simple
 ✓ Use control only when needed (shape, density, wall protection beta,..)