ITER Baseline Scenario – Q=10 operation

by **F. Turco** with ...many others

ITER International School; July 28, 2022

Work supported by US DOE under DE-FC02-04ER54698

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

What is a scenario

..., for our purpose today:

- plasma goals
 - power output, gain, duration, ...
- boundary conditions
 - heating mix, plasma formation, evolution, ...
- constraints set by machine parameters
 - flux consumption, tolerable li, coil currents, divertor loads, ...

IBS Mission:

- P_{fus} =500 MW $\rightarrow \beta_{T,therm}$ =2.55% $\rightarrow \beta_N \sim 1.8$ (low β_N)
- **Q=10** = $P_{fus}/(P_{transp}+P_{loss}-P_{\alpha}) \rightarrow \beta_T \tau_E$ or $G = \frac{\beta_N H}{q_{95}^2} \sim 0.4$ (proxy) \rightarrow Minimise input power \rightarrow Need high confinement \rightarrow High Ip
- At full field $B_t=5.3 \text{ T}$, $I_p=15 \text{ MA}$

 \rightarrow q₉₅~3 (lower current alternatives require higher β_N or H₉₈)

Constraints for demonstration discharges:

- ITER shape (affects MHD stability, pedestal)
- Zero injected torque (moderate rotation)
- H-mode on I_p flattop (heated ramps are possible)

What we discuss today

- 1. Standard IBS pulse design
- 2. MHD stability and disruptions
 - Cause of the instabilities
 - Solution and new scenario
- 3. Confinement trends
- 4. Lower current and heated access options

What we discuss today

1. Standard IBS pulse design

2. MHD stability and disruptions

- Cause of the instabilities
- Solution and new scenario
- 3. Confinement trends

4. Lower current and heated access options

The IBS is Designed with an Ohmic Ramp-up, Zero Injected Torque Throughout and Low β_{N}

Characteristics of the Equilibrium

The plasma current is mostly inductive

- → High I_p, low $β_N$ for high gain → Active current tailoring is not possible
- J_{boot} dominates the pedestal
- q₀~1 (sawteeth), q₉₅~3 → q=2 at p~0.8 → Strong correlation between pedestal and core

For 15 Years, the IBS in DIII-D Was Often Terminated by a Fast Growing, Disrupting 2/1 Tearing Mode

Before 2017

- Zero stable IBS at T<0.5 Nm
- Over 65% of full co-torque shots disrupt

There are no instabilities in the ramp-up (ohmic) There can be some in the pre-programmed ramp-down

Today I will be discussing the instabilities that occur on the β_{N} flattop (burn phase)

Keep in mind! We are interested in the ONSET, not the growth (the modes collapse the pressure and disrupt in 10-200 ms)

What we discuss today

1. Standard IBS pulse design

2. MHD stability and disruptions

- Cause of the instabilities
- Solution and new scenario
- 3. Confinement trends

4. Lower current and heated access options

This 2/1 TM Is Not Your Garden Variety Pressure-Driven Instability

Characteristics of these modes:

- They occur at fixed β_N , pressure shape
- After several τ_{FS} (pressure equilibrated)
- After tens of sawteeth, hundreds of ELMs (not seeded)
- At all torque, rotation and $\nabla \Omega$ values
- Lower β_N is not better
- While the current profile J is evolving

Studying the details of the TM drives led to a solution for robustly stable plasmas

Direct ECCD Stabilization is Not a Viable Option for This Scenario

- For this low- β_N scenario active stabilization of TMs has not been successful (and not for lack of trying)
- The TMs are likely not neoclassical in nature \rightarrow replacing j_{Boot} does not eliminate the drive (Δ ')
- q=2 is near the edge \rightarrow ECCD at ρ ~0.75 is very detrimental to the performance (shown later)

Different methods to achieve stability have to be investigated

- Pressure $p \rightarrow$ it evolves on the τ_{E} time scale (~100 ms in DIII-D)
- Current profile $J \rightarrow$ it evolves on the τ_{R} time scale (~1 s in these plasmas)
- Rotation Ω and $\nabla \Omega \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale
- Mode coupling

 perturbed field from n>1 modes may resonate with 2/1 rational surface
- Seeding → it assumes the mode is classically stable, but "noise" produces SMALL islands at 2/1 surface (sawteeth, ELMs)

The typical tearing time is $\tau_{\text{tear}} \sim 5 \text{ ms} \ll \tau_{\text{E}}$, τ_{R} If p, J, Ω , "seeds" are right, it MUST tear in $\leq 5 \text{ ms}$

- Pressure $p \rightarrow$ it evolves on the τ_{E} time scale (~100 ms in DIII-D)
- Current profile J \rightarrow it evolves on the τ_{R} time scale (~1 s in these plasmas)
- Rotation Ω and $\nabla \Omega \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale
- Mode coupling → perturbed field from n>1 modes may resonate with 2/1 rational surface
- Seeding → it assumes the mode is classically stable, but "noise" produces SMALL islands at 2/1 surface (sawteeth, ELMs)

The typical tearing time is $\tau_{\text{tear}} \sim 5 \text{ ms} \ll \tau_{\text{E}}$, τ_{R} If p, J, Ω , "seeds" are right, it MUST tear in $\leq 5 \text{ ms}$

Pressure: The IBS Instabilities Are Not Due to a β_N Limit

• The modes appear after >10 τ_E at constant pressure and pressure gradient

If it they were pressure-driven, it would tear in the first 100 ms

Pressure: The IBS Instabilities Are Not Due to a β_N Limit

- The modes appear after >10 τ_E at constant pressure and pressure gradient
- The β_N is low $\rightarrow \beta_N \ll \beta_{N,no-wall} \rightarrow not$ an ideal limit
- Lower β_N does <u>not</u> lead to better stability, higher β_N is <u>not</u> more unstable

There is no β_{N} threshold for instability

The pressure is not the cause of the 2/1 modes in the IBS

Higher β Shots Are Stable for >10 $\tau_E \rightarrow$ The Pressure is Relaxed, the Current is Not!

Timing of modes \rightarrow type of drive

Still not a pressure limit: \rightarrow p higher from the start \rightarrow Mode hits >1 s later! \rightarrow J_{ped} increases on $\tau_R \sim 1$ s

More consistent explanation:

For a given J profile: higher β_N = → higher pedestal (bootstrap) → more unstable

- Pressure $p \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale (~100 ms in DIII-D)
- Current profile $J \rightarrow$ it evolves on the τ_{R} time scale
- Rotation Ω and $\nabla \Omega \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale
- Mode coupling → perturbed field from n>1 modes may resonate with 2/1 rational surface
- Seeding → it assumes the mode is classically stable, but "noise" produces SMALL islands at 2/1 surface (sawteeth, ELMs)

Correlation is NOT causation The onset condition from $\nabla\Omega$ violates the onset time requirements \rightarrow Eliminated (in backup slides if there is interest)

- Pressure $p \rightarrow$ it evolves on the τ_{E} time scale (~100 ms in DIII-D)
- Current profile $J \rightarrow$ it evolves on the τ_R time scale (~1 s in these plasmas)
- Rotation Ω and $\nabla \Omega \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale
- Mode coupling → perturbed field from n>1 modes may resonate with 2/1 rational surface
- Seeding → it assumes the mode is classically stable, but "noise" produces SMALL islands at 2/1 surface (sawteeth, ELMs)

All inconsistent with the mode onset timing and do not represent all the database → Eliminated (in backup slides if there is interest)

- Pressure $p \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale (~100 ms in DIII-D)
- Current profile $J \rightarrow$ it evolves on the τ_R time scale (~1 s in these plasmas)
- Rotation Ω and $\nabla \Omega \rightarrow$ it evolves on the $\tau_{\rm E}$ time scale
- Mode coupling → perturbed field from n>1 modes may resonate with 2/1 rational surface
- Seeding → it assumes the mode is classically stable, but "noise" produces SMALL islands at 2/1 surface (sawteeth, ELMs)

This actually worked...

Ohmic and Bootstrap Currents Create the Edge Peak and the Current "Well" That Evolves from the H-mode Transition

- At the H-mode transition J_{boot} is formed
- \rightarrow peak at ρ ~0.92
- Ohmic current comes from the edge and diffuses inwards
- \rightarrow the "well" at ρ ~0.8 slowly fills
- The core is fixed by sawteeth ρ <0.45 (q_{min}~0.9-1)

The Current Profile Grows in the Outer Region and Reduces in the Core During the β_N flattop

- Stable time slice
- Time of 2/1 mode
- J evolves for ~2 s after flattop
- Stable and unstable shots have a similar evolution
- ...but the initial conditions are on average different

J at the Mode Onset has a Steeper Well Around the q=2 Surface

• Both ∇J_s are larger in magnitude at the times of the mode onset

J at the Mode Onset has a Steeper Well Around the q=2 Surface

• A steeper "well" in the current profile is likely the cause of the instabilities

- Consistent with time scales τ_{R}
- Independent of seeding

Separating Stable vs Unstable TIMES Shows the Correlation Between the Current Profile and the Instability

• Unstable points fall predominantly in the lower right region (larger gradients)

24

- Histograms allow to see the
 whole database of time slices
 (10⁴ hidden points)
- **Statistics** on the calculated ratios show this is meaningful (quantifiable)

Changes in the Current Profile Affect the Classical Tearing Index Δ^{\prime}

- This suggests stable and unstable times have different Δ' : classical drive
- Δ ' is a GLOBAL parameter, determined by all the current profile
- $\Delta'>0$ is necessary, <u>not sufficient</u> for instability:
 - $\rightarrow \Delta'$ trends determine if more/less stable
 - \rightarrow For instability, $\Delta' > \Delta'_{crit}$ (inner layer physics)

The critical ⊿' for instability is likely the cause of the overlapping region of J (local T_e?)

Timing of the Modes Helps Us Find a Solution: the Unstable Shots Are Separated in ∇J from the Start

More stable current profile late, fewer unstable shots after ~1 s

 → if we solve the access problem, high probability of remaining stable

What we discuss today

1. Standard IBS pulse design

2. MHD stability and disruptions

- Cause of the instabilities
- Solution and new scenario

3. Confinement trends

4. Lower current and heated access options

Methodology to Stabilize the IBS Modes Illustrates Actuators That Can be Used in All Scenarios to Change the Current Profile

Fixed zero torque

Applied Modifications to Show Causality. (1) Heating delay

- Database of pulses with only change to the H-mode transition time shows the late timing is robustly stable
- Trajectory of l_i shows current profile evolution is different
 - ℓ_i is not sufficient to predict stability

Applied Modifications to Show Causality. (2) Ip ramp rate

- Slower Ip ramp rates are robustly stable – similar effect as heating delay
- Combination of Ip ramp and heating time changes can tailor the stability to the hardware requirements

Applied Modifications to Show Causality. (3) D_2 gas "bleed"

- Modest gas "bleed" eliminates LATE modes
- Results in more regular and more frequent ELMs
- Smaller ELMs = lower pedestal!
- Little difference in density

The Recipe is Robust and Repeatable Under a Variety of Conditions

- Different Ip, B_T, n_e, gas, impurities (Kr, Xe, C6, W)
- Heating mix (ECH, NBI)
- Open/closed divertor (USN, LSN)
- It did not go to a different density, Ω , $\Delta\Omega$ regime

What we discuss today

1. Standard IBS pulse design

2. MHD stability and disruptions

Cause of the instabilities
Solution and new scenario

3. Confinement trends

4. Lower current and heated access options

Metrics for Evaluation of the Performance

- Fusion power in DT plasmas of interest in ITER will have:
 - $P_{fus} \propto \langle p^2 \rangle \propto \beta_T^2$ (%) at fixed B (makes P_{fus} dimensionless)
 - In ITER, P_{fus} = 500 MW at B=5.3 T requires β_T =2.55%
- $Q_{fus} \propto \langle nT \rangle_{\tau} \Rightarrow use \beta_{T}\tau$ as a proxy for gain (not dimensionless)
 - Can also use $G \equiv \beta_N H_{89} / q_{95}^2$ as a proxy for gain, but the accuracy of a confinement scaling is assumed
 - ITER Q=10 requires G=0.38-0.42 (depends on precise value assumed for q₉₅ at 15 MA)
- Will also show the standard stability and confinement metrics (β_N , H_{98v2})

Confinement Gets Worse at Lower Torque

ECH in Dominant NBI Heated Plasmas Reduces Confinement

The ECH Location Also Strongly Affects the Confinement

Heating efficiency drops dramatically with <u>off-axis heating</u> $\eta_{\text{H}} \sim 1 \text{-} \rho^2$

Regardless of I_p, torque: ρ_{ECH} >0.75

- Reduces confinement below standard H-mode levels (Not a power degradation effect)
- Direct ECCD stabilization is not compatible with Q=10 performance

Drop in Confinement With Off-Axis Heating Can Be Seen Also Dynamically With RT Mirror Steering of the Gyrotrons

 Moving 3 MW of ECH from ρ=0.5 to ρ=0.8 decreases τ_E by 25-30%, H_{98y2} by 15-18%

 $\eta_{heating} pprox 1 -
ho_{ECH}^2$

Expect 50% drop in τ_E , observe 25%

Loss of <u>heating efficiency</u> compensated by <u>transport</u> <u>improvement</u>

Drop in Confinement With Off-Axis Heating Can Be Seen Also Dynamically With RT Mirror Steering of the Gyrotrons

 Moving 3 MW of ECH from ρ=0.5 to ρ=0.8 decreases τ_E by 25-30%, H_{98y2} by 15-18%

 $\eta_{heating} pprox 1 -
ho_{ECH}^2$

Expect 50% drop in τ_E , observe 25%

Loss of <u>heating efficiency</u> compensated by <u>transport</u> <u>improvement</u>

What we discuss today

- 1. Standard IBS pulse design
- 2. MHD stability and disruptions
 - Cause of the instabilities
 - Solution and new scenario
- 3. Confinement trends
- 4. Lower current and heated access options

Performance to Reach 500 MW of Fusion Power in ITER Achieved at All Torque Levels and Lower Current

- With co-NBI, the goal is reached by 11 MA equivalent
- With 0 Nm torque, 13.5 MA may be sufficient
- For co-NBI, the achieved β does not increase above 12.5 MA

Gain Metric (βτ) Does Not Improve Above 13 MA Equivalent Current

0.6

 $Q_{95} =$

- Curves at all torque levels have similar shapes
 - Effect is not likely due to ExB shear
- Increase in gain seems to saturate around 13 MA
 - Corresponds to $q_{95} \approx 3.7$
 - Previously seen on DIII-D, but not explained [Schissel, et al., NF 32, 107 (1992)]

3.9

5.0

3.3

29

1.8

The Advanced Inductive Scenario Constitutes a Promising Alternative for ITER's Q=10 Mission at Lower Current

- Advanced Inductive (A.I.) scenario has demonstrated good performance projecting to Q=10:
 - H_{98y2} ~1.2-1.5, β_N =2.4-3.0 \rightarrow G~0.4
 - At q_{95} ~3.8-4.8 and T_i/T_e ~1-1.6
 - In DIII-D, AUG, JT-60U and JET
- This scenario has a different access to Hmode: heated ramp
- Needs to be extended to SN shape and low T

Ohmic vs A.I. Heated Access Has Significant Impact on the Stability and Performance of the Burn Phase

- Heating in the Ip ramp usually gives access to higher stable flattop β_N
- A.I. scenario can operate at reduced q₉₅~4.5 because of higher MHD limits
- G is maintained thanks to higher β_N and high H₉₈ Heated ramp

JET hybrid scenario results in next talk!

What we have not covered (a lot)

- Tungsten and the impact of intrinsic radiation
- ITER-like controls: slower, fewer?
- Projections (no time today...)
- Differences with ITER parameters:
 - Higher temperature (Ip, power)
 - Lower collisionality
 - Rotation is relatively unknown \rightarrow confinement?
 - Core-edge integration (divertor impurities and detachment)
 - RMP ELM suppression
 - Fuelling: less core, more pellets?

Stability: seeds (not)

Experience, and DB analysis, show that the presence of other n>1 modes does not separate stable/unstable plasmas

- Many of the 2/1 modes are not coincident with any other n>1 mode
- Many of the stable shots have zero rotation differential between n2,n3 islands and the q=2 surface - but no 2/1 mode

Higher n modes cannot be a general cause of the instabilities in the IBS

2011-2020 full IBS database

Millions of seeds... and very few modes \rightarrow seeding is not the main cause of the 2/1 instabilities

- There are 18054 ELMs in 273 shots only 162 modes
- Stable shots have the same ELMs and sawteeth as the shots with a mode
- There are hundreds of ELMs and tens of sawteeth before a mode

Focussing on the last lone ELM or sawtooth will not solve the problem

Stability: rotation (not)

J, p represent the equilibrium, Ω may affect mode coupling or locking

Sources of free energy

- → **Pressure**, **current** (and their profile shapes)
- → Δ' is a global parameter **function of p and J** = free energy for tearing $\Delta' > 0$ Necessary but not sufficient:
- → Instability threshold Δ'_{crit} >0 in toroidal geometry: function of inner layer physics → T_e , n_e , ∇T_e , etc

Rotation and its gradient:

- $\rightarrow \Omega$ not a source of free energy
- → at rational surface, large Ωgradient destabilizing → need very large island (not our case)
- → between rational surfaces, large Ω gradient believed to decouple equal n surfaces → only 1/1 and 3/1 surfaces can couple

(Refs: Wesson, GGJ, Pletzer)

Unlike J, Ω and $\Delta\Omega$ Evolve Fast, or Are Fixed at Low Torque

• Time-of-mode plot shows that stability gets better in time (fewer modes late)

Time Scales of $\Delta\Omega$ Evolution to Instability Are Too Long to Explain the Mode Onset by Surface Coupling

- Differential rotation between core and edge appears lower for many unstable times
- "Tails" show that ΔΩ is low for t>10-30 τ_{tearing}! (τ_{tear}~5 ms)

Lack of $\Delta\Omega$ is Not Likely To Be the Cause of the Instabilities

50% of the modes have

- Large $\Delta\Omega$ (in "stable" region)
- Constant $\Delta\Omega$ ("tail" // to 1:1)
- Low/zero $\Delta\Omega$ for >10-30 τ_{tear}

Mode "triggering" by lack of $\Delta\Omega$ is inconsistent with the onset time scale

Stability: rotation is coupled to current profile

In the Pedestal, the Time Scales are Shorter

<u>Current \rightarrow Energy, Rotation \rightarrow Tearing:</u>

- Global resistive diffusion time $\tau_R \sim 800-1200 \text{ ms}, \tau_R \sim \Delta \rho^2$ \rightarrow Local J changes at $\rho \sim 0.70-0.95$ can be on $\Delta \tau_R \sim 100 \text{ ms}$
- Energy confinement time (pressure, rotation) τ_E ~ 100-200 ms
 → if torque is stepped up, Ω and J_{pedestal} change in ~200 ms
- Tearing time $\tau_T \sim 5 \text{ ms}$

Rotation and current profile can be coupled locally

At lower rotation/rotation shear:

- → The pedestal increases (transport)
- \rightarrow More J_{boot}
- → The Ohmic drive has to reduce (fixed Ip)

Steeper "well" around q=2

When the Rotation Changes, the Current Profile Changes too!

- Rotation keeps evolving after the torque step!
- Rotation and pedestal J are anticorrelated

Current and Rotation Are Also Correlated in the Global Database – raw data

- If you don't see an effect in the raw data, it does not exist
- Raw MSE data show that Ω and $\Delta\Omega$ are correlated in the IBS database

Current and Rotation Are Also Correlated in the Global Database – raw data and J (efit) reconstructions

 MSE constrains the core, magnetics the pedestal

 The total plasma current Ip is fixed → lower J in the "well" requires higher J in the core

Stability: more on current profile

The Current Profile of the ~330 IBS Shots can be Reconstructed and Correlated with Stability and Global Quantities

- Local current density measured by raw MSE data
- "Enhanced" efits for q and J, with MSE+magnetics and a pedestal
- → Magnetics + edge constraints describe the pedestal (similar to kinetic efit)
- → MSE constrains the core up to ρ ~0.8
- Unstable = at time of 2/1 mode onset
- Stable = stable time slices on the β_N flattop (stable + unstable before mode!)

Separation and Its Evolution Are Independent from the Applied Torque

- Low torque shots tend to be more unstable
- They start, and stay, predominantly in the higher ∇J regions

∇J separation is also independent from sawteeth, ELMs, higher m/n modes

Represent the Evolution with Gradients Inside and Outside the J "well"

- It takes 1.5-2 s for the current profile to reach equilibrium
- Both J_{ped} and J_{well} grow, but they evolve toward a shallower "well"

