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What is a scenario

• plasma goals

- power output, gain, duration, …

• boundary conditions

- heating mix, plasma formation, evolution, …

• constraints set by machine parameters

- flux consumption, tolerable li, coil currents, divertor loads, …

…, for our purpose today:
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What is the ITER Baseline Scenario (affectionately, the IBS)

IBS Mission:

- Pfus=500 MW  bT,therm=2.55%

 bN~1.8 (low bN)

- Q=10 =Pfus/(Ptransp+Ploss-Pa)  bTtE or 𝐺 =
𝛽𝑁𝐻

𝑞95
2 ~0.4 (proxy)

 Minimise input power  Need high confinement  High Ip

- At full field Bt=5.3 T, Ip=15 MA

 q95~3 (lower current alternatives require higher bN or H98)

Constraints for demonstration discharges:

- ITER shape (affects MHD stability, pedestal)

- Zero injected torque (moderate rotation)

- H-mode on Ip flattop (heated ramps are possible)
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What we discuss today

1. Standard IBS pulse design

2. MHD stability and disruptions

• Cause of the instabilities

• Solution and new scenario

3. Confinement trends

4. Lower current and heated access options
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The IBS is Designed with an Ohmic Ramp-up, Zero Injected 

Torque Throughout and Low bN

ITER

DIII-D pumped Std Bt Pumping

DIII-D pumped Rev Bt

DIII-D unpumped Std Bt

(x0.2778)

Pumping

∇B drift

∇B drift

bN

Ip (MA)

PNBI (MW)

ECH

T (Nm)

Density

1019m-3

Gas flow (Tl/s)

li

Da

(au)

174480
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• The plasma current is mostly inductive 

 High Ip, low bN for high gain

 Active current tailoring is not possible

• Jboot dominates the pedestal

• q0~1 (sawteeth), q95~3  q=2 at r~0.8  Strong 

correlation between pedestal and core

Jtot

Johm

Jboot

Jnbi

q=2

Characteristics of the Equilibrium
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For 15 Years, the IBS in DIII-D Was Often Terminated by a Fast 

Growing, Disrupting 2/1 Tearing Mode

Before 2017

- Zero stable IBS at T<0.5 Nm 

- Over 65% of full co-torque shots disrupt

There are no instabilities in the ramp-up (ohmic)

There can be some in the pre-programmed 

ramp-down

Today I will be discussing the instabilities that 

occur on the bN flattop (burn phase)

IBS database <2017

Keep in mind! We are interested in the ONSET, not 

the growth (the modes collapse the pressure and 

disrupt in 10-200 ms)
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This 2/1 TM Is Not Your Garden Variety Pressure-Driven Instability

Characteristics of these modes:

- They occur at fixed bN, pressure shape

- After several tEs (pressure equilibrated)

- After tens of sawteeth, hundreds of ELMs

(not seeded)

- At all torque, rotation and ∇Ω values

- Lower bN is not better

- While the current profile J is evolving

Studying the details of the TM drives led 

to a solution for robustly stable plasmas

tR~1s
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Direct ECCD Stabilization is Not a Viable Option for This 

Scenario

• For this low-bN scenario active stabilization of TMs 

has not been successful (and not for lack of trying)

• The TMs are likely not neoclassical in nature 

replacing jBoot does not eliminate the drive (D')

• q=2 is near the edge  ECCD at r~0.75 is very 

detrimental to the performance (shown later)

Different methods to achieve stability 

have to be investigated
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Which Physics Mechanisms Can Affect the ONSET of Tearing 

modes?

- Pressure p  it evolves on the tE time scale (~100 ms in DIII-D)

- Current profile J  it evolves on the tR time scale (~1 s in these plasmas)

- Rotation 𝜴 and 𝜵𝜴 it evolves on the tE time scale

- Mode coupling  perturbed field from n>1 modes may resonate with 

2/1 rational surface

- Seeding  it assumes the mode is classically stable, but "noise" 

produces SMALL islands at 2/1 surface (sawteeth, ELMs)

The typical tearing time is ttear~5 ms ≪ tE, tR

If p, J, W, "seeds" are right, it MUST tear in ≤ 5 ms
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Pressure: The IBS Instabilities Are Not Due to a bN Limit

• The modes appear after >10 tE at constant pressure and pressure gradient

bN values Time before mode (ms)

2xtE~200 ms

bN does not change 

from t=0 to mode

bN has been constant for 

2-50 tE before the mode

If it they were pressure-driven, it would tear in the first 100 ms
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Pressure: The IBS Instabilities Are Not Due to a bN Limit

• The modes appear after >10 tE at constant pressure and pressure gradient

• The bN is low bN≪bN,no-wall  not an ideal limit

There is no bN threshold for instability

• Lower bN does not lead to better stability, 

higher bN is not more unstable

The pressure is not the cause of the 

2/1 modes in the IBS
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Higher b Shots Are Stable for >10 tE  The Pressure is Relaxed, 

the Current is Not!

For a given J profile:

higher bN =

 higher pedestal (bootstrap)

 more unstable

Still not a pressure limit: 

 p higher from the start 

 Mode hits >1 s later!

 Jped increases on tR~1 s

(a) (b)

(c) (d)

(e) (f)

Timing of modes  type of drive

More consistent explanation:
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- Pressure p  it evolves on the tE time scale (~100 ms in DIII-D)

- Current profile J  it evolves on the tR time scale 

- Rotation 𝜴 and 𝜵𝜴 it evolves on the tE time scale

- Mode coupling  perturbed field from n>1 modes may resonate with 

2/1 rational surface

- Seeding  it assumes the mode is classically stable, but "noise" 

produces SMALL islands at 2/1 surface (sawteeth, ELMs)

Correlation is NOT causation
The onset condition from 𝛁𝛀 violates the onset time requirements 

Eliminated (in backup slides if there is interest)

Which Physics Mechanisms Can Affect the ONSET of Tearing 

modes?
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- Pressure p  it evolves on the tE time scale (~100 ms in DIII-D)

- Current profile J  it evolves on the tR time scale (~1 s in these plasmas)

- Rotation 𝜴 and 𝜵𝜴 it evolves on the tE time scale

- Mode coupling  perturbed field from n>1 modes may resonate with 

2/1 rational surface

- Seeding  it assumes the mode is classically stable, but "noise" 

produces SMALL islands at 2/1 surface (sawteeth, ELMs)

Which Physics Mechanisms Can Affect the ONSET of Tearing 

modes?

All inconsistent with the mode onset timing and do not 

represent all the database  Eliminated

(in backup slides if there is interest)
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- Pressure p  it evolves on the tE time scale (~100 ms in DIII-D)

- Current profile J  it evolves on the tR time scale (~1 s in these plasmas)

- Rotation 𝜴 and 𝜵𝜴 it evolves on the tE time scale

- Mode coupling  perturbed field from n>1 modes may resonate with 

2/1 rational surface

- Seeding  it assumes the mode is classically stable, but "noise" 

produces SMALL islands at 2/1 surface (sawteeth, ELMs)

This actually worked…

Which Physics Mechanisms Can Affect the ONSET of Tearing 

modes?
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Ohmic and Bootstrap Currents Create the Edge Peak and the 

Current "Well" That Evolves from the H-mode Transition

- At the H-mode transition Jboot is 

formed 

 peak at r~0.92

- Ohmic current comes from the edge 

and diffuses inwards

 the "well" at r ~0.8 slowly fills

- The core is fixed by sawteeth r <0.45 

(qmin~0.9-1)
174480

li

time (ms)

Jped

"Well"
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The Current Profile Grows in the Outer Region and Reduces 

in the Core During the bN flattop

r=0.5

r=0.65

JpedJwell

- J evolves for ~2 s 

after flattop

- Stable and unstable

shots have a similar 

evolution

- …but the initial 

conditions are on 

average different

r=0.4• Stable time slice

• Time of 2/1 mode
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J at the Mode Onset has a Steeper Well Around the q=2 

Surface

• Both 𝛁𝑱s are larger in magnitude at the times of the mode onset

More 

negative

inside

More 

positive

outside

J/J outside well


J/

J
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n
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J/J outside well


J/

J
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• A steeper "well" in the current profile is likely the cause of the instabilities

J at the Mode Onset has a Steeper Well Around the q=2 

Surface

• Consistent with time scales tR

• Independent of seeding
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• Unstable points fall predominantly in the lower right region (larger gradients)

J/J outside well


J/

J
 i
n

si
d

e
 w

e
ll

• Histograms allow to see the 

whole database of time slices 

(104 hidden points)

• Statistics on the calculated 

ratios show this is meaningful

(quantifiable)

Separating Stable vs Unstable TIMES Shows the Correlation 

Between the Current Profile and the Instability
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• This suggests stable and unstable times have 

different D' : classical drive

• D' is a GLOBAL parameter, determined by all 

the current profile

• D'>0 is necessary, not sufficient for instability: 

 D' trends determine if more/less stable

 For instability, D'> D'crit (inner layer physics)

Changes in the Current Profile Affect the Classical 

Tearing Index D'

J/J outside well


J
/J

 i
n

si
d

e
 w

e
ll

The critical D' for instability is likely the cause of the 

overlapping region of J (local Te?)
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Timing of the Modes Helps Us Find a Solution: the 

Unstable Shots Are Separated in J from the Start

• More stable current profile late, fewer unstable shots after ~1 s 

 if we solve the access problem, high probability of remaining stable

67% of the Instabilities 

Occur Before 1.3 s on 

the bN Flattop (1-1.5 tR)



27

What we discuss today

1. Standard IBS pulse design

2. MHD stability and disruptions

• Cause of the instabilities

• Solution and new scenario

3. Confinement trends

4. Lower current and heated access options
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Fixed zero torque

Changes li, current 
penetration

Ip (MA)

D2 (Tl/s)

PNBI (kW)

bN

Ip ramp rate

Gas bleed

Heating delay

LH transition

Peak li

Changes ELM frequency, 

pedestal (not density)

Allow J time to penetrate 
into the core  starts with 

lower pedestal li

Methodology to Stabilize the IBS Modes Illustrates Actuators That 

Can be Used in All Scenarios to Change the Current Profile

Changes li, current 
penetration
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Applied Modifications to Show Causality. (1) Heating delay

෩𝑩𝒏=𝟏

Ip (MA)

bN

PNBI (MW)

li

TNBI (Nm)

• Database of pulses with only 

change to the H-mode transition 

time shows the late timing is 

robustly stable

• Trajectory of li shows current 

profile evolution is different

– li is not sufficient to predict 

stability

(T.C. Luce 2018)
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bN
li

PNBI (MW)

TNBI (Nm) Density (1019m-3)

Ip (MA)

Applied Modifications to Show Causality. (2) Ip ramp rate

• Slower Ip ramp rates are robustly 

stable – similar effect as heating 

delay

• Combination of Ip ramp and 

heating time changes can tailor 

the stability to the hardware 

requirements

(T.C. Luce 2018)



31

෩𝑩𝒏=𝟏

li

Density (1019m-3)

fELM (Hz)D2 (Tl/s)

Ip (MA)

bN

PNBI (MW)

TNBI (Nm)

Applied Modifications to Show Causality. (3) D2 gas "bleed"

• Modest gas "bleed" eliminates 

LATE modes

• Results in more regular and 

more frequent ELMs

• Smaller ELMs = lower pedestal!

• Little difference in density

(T.C. Luce 2018)
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The Recipe is Robust and Repeatable Under

a Variety of Conditions

• Different Ip, BT, ne, gas, impurities (Kr, Xe, C6, W)

• Heating mix (ECH, NBI)

• Open/closed divertor (USN, LSN)

• It did not go to a different density, W, DW regime

(intentional disruptions)

This is NOT the intrinsic 

instability!

Fraction of instabilities
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1. Standard IBS pulse design

2. MHD stability and disruptions

• Cause of the instabilities

• Solution and new scenario

3. Confinement trends

4. Lower current and heated access options



34

Metrics for Evaluation of the Performance

• Fusion power in DT plasmas of interest in ITER will have:

Pfus  <p2>  bT
2(%) at fixed B (makes Pfus dimensionless)

– In ITER, Pfus = 500 MW at B=5.3 T requires bT=2.55%

• Qfus  <nT>t  use bTt as a proxy for gain (not dimensionless)

– Can also use G  bN H89 / q95
2 as a proxy for gain, but the accuracy 

of a confinement scaling is assumed

– ITER Q=10 requires G=0.38-0.42 (depends on precise value assumed 

for q95 at 15 MA)

• Will also show the standard stability and confinement metrics (bN, H98y2)
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Confinement Gets Worse at Lower Torque

Time (ms) Time (ms)

Torque (Nm, flattop average)

t E
(s

)

Ip
 (M

A
)

IBS database NBI only

• But other factors apply (Ip, 

density, etc…)
bN

Ip

NBI

T (Nm)

ne

Bpert n=2

tE

li

H98
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ECH in Dominant NBI Heated Plasmas Reduces 

Confinement

Time (ms) Time (ms)

Torque (Nm, flattop average)

t E
(s

)

Ip
 (M

A
)

IBS database NBI+ECH

• ECH degrades both heat and 

particle confinement
bN

Ip

NBI

T (Nm)

ne

Bpert n=3

tE

li

H98
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The ECH Location Also Strongly Affects the Confinement

Regardless of Ip, torque: rECH>0.75

- Reduces confinement below 

standard H-mode levels

- Direct ECCD stabilization is not 

compatible with Q=10 performance

(Not a power degradation effect)

hH~1-r2

Heating efficiency drops 

dramatically with off-axis heating
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Drop in Confinement With Off-Axis Heating Can Be Seen

Also Dynamically With RT Mirror Steering of the Gyrotrons

- Moving 3 MW of ECH from r=0.5 

to r=0.8 decreases tE by 25-30%, 

H98y2 by 15-18%

𝜂ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ≈ 1 − 𝜌𝐸𝐶𝐻
2

Expect 50% drop in tE, observe 25%

Loss of heating efficiency

compensated by transport 

improvement
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- Moving 3 MW of ECH from r=0.5 

to r=0.8 decreases tE by 25-30%, 

H98y2 by 15-18%

𝜂ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ≈ 1 − 𝜌𝐸𝐶𝐻
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Also Dynamically With RT Mirror Steering of the Gyrotrons
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Performance to Reach 500 MW of Fusion Power in ITER 

Achieved at All Torque Levels and Lower Current

• With co-NBI, the goal is reached by 

11 MA equivalent

• With 0 Nm torque, 13.5 MA may be 

sufficient

• For co-NBI, the achieved b does 

not increase above 12.5 MA 0 Nm Torque

1 Nm Torque

Co-NBI

ITER 500 MW 

fusion power

ITER 

baseline

(T.C. Luce 2017)
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Gain Metric (bt) Does Not Improve Above 13 MA 

Equivalent Current

• Curves at all torque levels have 

similar shapes

– Effect is not likely due to ExB shear

• Increase in gain seems to saturate 

around 13 MA

– Corresponds to q953.7

– Previously seen on DIII-D, but not 

explained [Schissel, et al., NF 32, 

107 (1992)]

0 Nm Torque

1 Nm Torque

Co-NBI

ITER 

baseline

(T.C. Luce 2017)
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The Advanced Inductive Scenario Constitutes a Promising 

Alternative for ITER's Q=10 Mission at Lower Current

• Advanced Inductive (A.I.) scenario has 

demonstrated good performance projecting to 

Q=10: 

• This scenario has a different access to H-

mode: heated ramp

• Needs to be extended to SN shape and low T

(Luce 2012)

- H98y2~1.2-1.5, bN=2.4-3.0  G~0.4

- At q95~3.8-4.8 and Ti/Te~1-1.6

- In DIII-D, AUG, JT-60U and JET
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Ohmic vs A.I. Heated Access Has Significant Impact on the 

Stability and Performance of the Burn Phase

• Heating in the Ip ramp usually gives access 

to higher stable flattop bN

• A.I. scenario can operate at reduced 

q95~4.5 because of higher MHD limits

• G is maintained thanks to higher bN and 

high H98

Time (ms)

Ip (MA)

q95

Pnbi (MW)

bN

G

IBS co-torque, IBS T=0, A.I. (DN!)

Heated ramp

Normalised current (IN)

G=bN*H/q95
2

Q=10

(Luce 2011)

JET hybrid 

scenario results 

in next talk!
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What we have not covered (a lot)

• Tungsten and the impact of intrinsic radiation

• ITER-like controls: slower, fewer?

• Projections (no time today…)

• Differences with ITER parameters:

− Higher temperature (Ip, power)

− Lower collisionality

− Rotation is relatively unknown  confinement?

− Core-edge integration (divertor impurities and detachment)

− RMP ELM suppression

− Fuelling: less core, more pellets?
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Extras
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Stability: seeds (not)
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• Many of the 2/1 modes are not

coincident with any other n>1 mode

Experience, and DB analysis, show that the presence of other 

n>1 modes does not separate stable/unstable plasmas

n2, n3 amplitude [G]

∆
𝛀

(n
2
,n

3
-q

=
2

) 
[K

H
z]

21 unstable shots 

without n2 or n3

14 stable shots with 

fn2, fn3 ≤ fq2

2011-2020 full IBS database

• Many of the stable shots have zero 

rotation differential between n2,n3 

islands and the q=2 surface - but no 

2/1 mode

Higher n modes cannot be a general 

cause of the instabilities in the IBS

(>100s time slices)
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Millions of seeds… and very few modes  seeding is not the 

main cause of the 2/1 instabilities

Min Dt ELM-mode (last ELM)

P
ro

b
a

b
ili

ty
 t

h
a

t 
a

 s
h

o
t 

h
a

s 
th

a
t 

D
t

Tearing time ~5 ms

50/50 chance that an 

ELM falls near a mode 

(or not!)

• There are 18054 ELMs in 273 shots –

only 162 modes

• Stable shots have the same ELMs 

and sawteeth as the shots with a 

mode

• There are hundreds of ELMs and tens 

of sawteeth before a mode

🤯

Focussing on the last lone ELM or 

sawtooth will not solve the problem

2011-2020 full IBS database
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Stability: rotation (not)
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J, p represent the equilibrium, W may affect mode 

coupling or locking

 Pressure, current (and their profile shapes)

 D' is a global parameter function of p and J = free energy for tearing

D' > 0 Necessary but not sufficient:

 Instability threshold D'crit>0 in toroidal geometry: function of inner layer physics 

𝑇𝑒 , 𝑛𝑒, ∇𝑇𝑒, etc

(Refs: Wesson, GGJ, Pletzer)

 W not a source of free energy

 at rational surface, large W gradient destabilizing  need very large 

island (not our case)

 between rational surfaces, large W gradient believed to decouple 

equal n surfaces  only 1/1 and 3/1 surfaces can couple

Sources of free energy

Rotation and its gradient:
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Unlike J, W and DW Evolve Fast, or Are Fixed at Low Torque

T<1.2 Nm

T=1.5-5 Nm

• Time-of-mode plot shows that stability gets better in time (fewer modes late)

T<1.2 Nm

T=1.5-5 Nm

Rotation r=0.65 (kHz) DW r=0.5-r=0.78 (kHz)

W and DW either 

decrease (worse) or 

stay the same

The equilibrium 

becomes more stable,

W does not

Hypothesis of 

destabilization by DW

inconsistent with 

sparser modes late
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Time Scales of DW Evolution to Instability Are Too Long 

to Explain the Mode Onset by Surface Coupling

Mode

"Tails"
Last 50-150 ms 

before mode

(>10 ttear)

W at r=0.78 (q=2) (kHz)
W

 a
t 

r
=
0
.5

 (
c

o
re

) 
(k

H
z)

Stable

- Differential rotation between 

core and edge appears lower

for many unstable times

- "Tails" show that DW is low for 

t>10-30 ttearing! (ttear~5 ms)

All database, 100 ms average
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50% of the modes have

- Large DW (in "stable" region)

- Constant DW ("tail" // to 1:1)

- Low/zero DW for >10-30 ttear

W at r=0.78 (q=2) (kHz)
W

 a
t 

r
=
0
.5

 (
c

o
re

) 
(k

H
z)

Stable

Mode "triggering" by lack of 

DW is inconsistent with the 

onset time scale

Lack of DW is Not Likely To Be the Cause of the Instabilities

Mode

Tails 

>10-30×ttear

All database, 100 ms average
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Stability: rotation is coupled to current profile
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In the Pedestal, the Time Scales are Shorter

Current   Energy, Rotation   Tearing:  

• Global resistive diffusion time tR ~ 800-1200 ms, tR ~ Dr2

• Energy confinement time (pressure, rotation) tE ~ 100-200 ms

• Tearing time tT ~ 5 ms

Rotation and current profile can be coupled locally

 Local J changes at r~0.70-0.95 can be on DtR~100 ms

 if torque is stepped up, W and Jpedestal change in ~200 ms
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Fixed Ip Forces the Correlation Between "Well" and Pedestal

 The pedestal increases 

(transport)

 More Jboot

 The Ohmic drive has to reduce 

(fixed Ip)

At lower rotation/rotation shear:

Steeper "well" around q=2
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When the Rotation Changes, the Current Profile Changes too!

V
 r

=
0

.8

(k
m

/s
)

n
e

p
e

d
e

st
a

l

(1
0

1
9

m
-3

)

Te
p

e
d

e
st

a
l

(e
V

)

Jpedestal

(normalised)

Dg MSE r=0.8

157461 157462

Rotation   

ne, pedestal   

MSE J at “well”   

Jpedestal 

• Rotation keeps evolving after the 

torque step!

• Rotation and pedestal J are anti-

correlated

Torque steps

J
 o

r 
p

ro
x
y
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Current and Rotation Are Also Correlated in the Global 

Database – raw data

• If you don't see an 

effect in the raw data, it 

does not exist

• Raw MSE data show that 

W and DW are 

correlated in the IBS 

database
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Current and Rotation Are Also Correlated in the Global 

Database – raw data and J (efit) reconstructions

r=0.4 r=0.65 r~0.78

• MSE constrains the 

core, magnetics the 

pedestal

Lower 

rotation =

Steeper 

well

• The total plasma current Ip is fixed 

lower J in the "well" requires higher J 

in the core
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Stability: more on current profile
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The Current Profile of the ~330 IBS Shots can be Reconstructed 

and Correlated with Stability and Global Quantities

- Local current density measured by raw 

MSE data

- “Enhanced” efits for q and J, with 

MSE+magnetics and a pedestal

 Magnetics + edge constraints describe 

the pedestal (similar to kinetic efit)

 MSE constrains the core up to r~0.8

J “well”

q = 2

Equilibrium reconstruction

Raw MSE data

Sawteeth

𝜇0𝐽~
𝜕𝐵𝑍
𝜕𝑅

~tan(γ)

J pedestal

• Unstable = at time of 2/1 mode onset

• Stable = stable time slices on the bN flattop

(stable + unstable before mode!)
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Separation and Its Evolution Are Independent from the 

Applied Torque

• Low torque shots tend to be more unstable

• They start, and stay, predominantly in the higher J regions

J separation is also 

independent from 

sawteeth, ELMs, higher 

m/n modes 
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Represent the Evolution with Gradients Inside and 

Outside the J "well"

• It takes 1.5-2 s for the current profile to reach equilibrium

• Both Jped and Jwell grow, but they evolve toward a shallower "well"

∇𝐽𝑜𝑢𝑡∇𝐽𝑖𝑛


