Status of the ITER Pro

Alberto Loarte

ce and Operations Department, ITER Organization

The views and opinions expressed herein do not necessarily reflect those of the ITER organization.

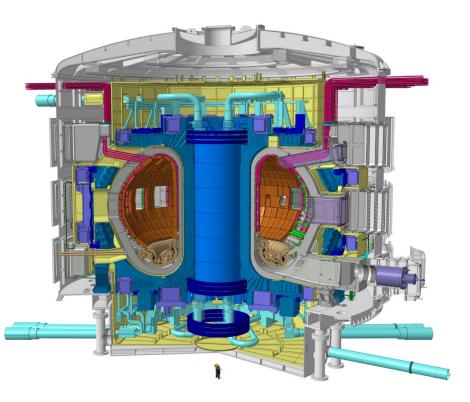
Synopsis

- The ITER Project
- ITER Project status

2015 ITER International School – A. Loarte

The ITER Project: Key Science and Technology

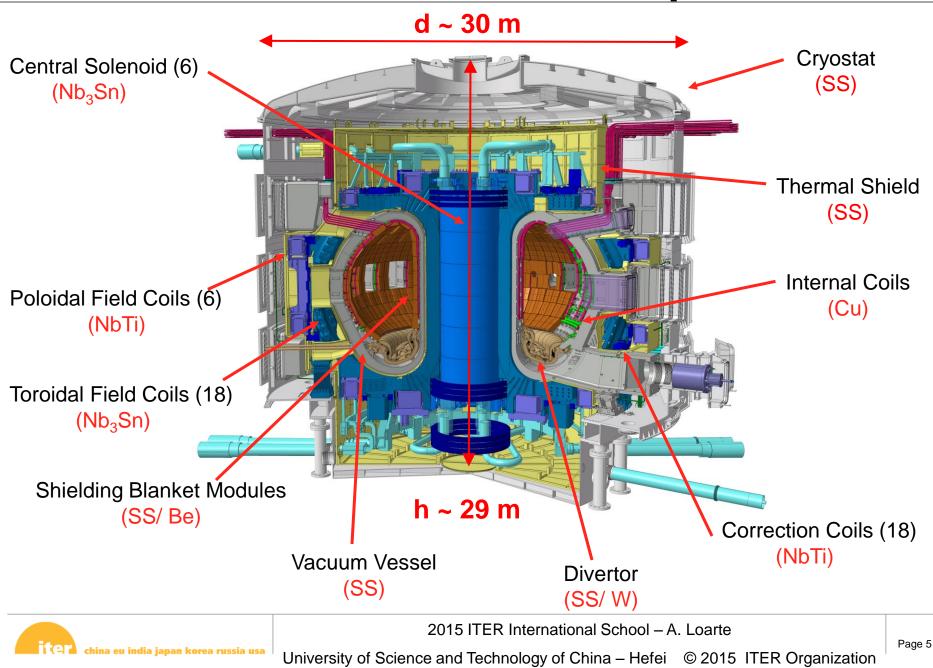
2015 ITER International School – A. Loarte


china eu india japan korea russia usa

Page 3

The ITER Mission

- ITER Program Objective:
 - to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes
- Key Technical Goals:
 - achieve extended burn of a DT plasma with dominant alphaparticle heating (Q ≥ 10, ~500 s)
 - develop steady-state fusion power production as ultimate goal
 - integrate and test all essential fusion power reactor technologies and components
 - demonstrate safety and environmental acceptability of fusion



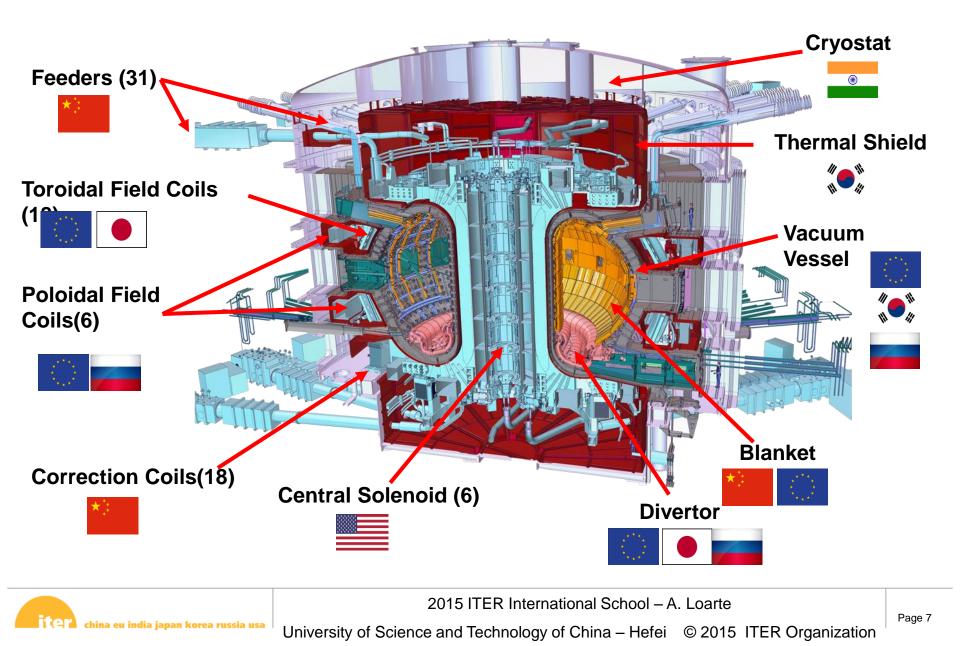
ITER tokamak

2015 ITER International School – A. Loarte

ITER – Tokamak Core Components

ITER – A Major International Collaboration

 90% of ITER components will be supplied "in-kind" by the Members through their Domestic Agencies



 This approach necessitates the integration of ITER management, design and procurement activities across the globe

2015 ITER International School – A. Loarte

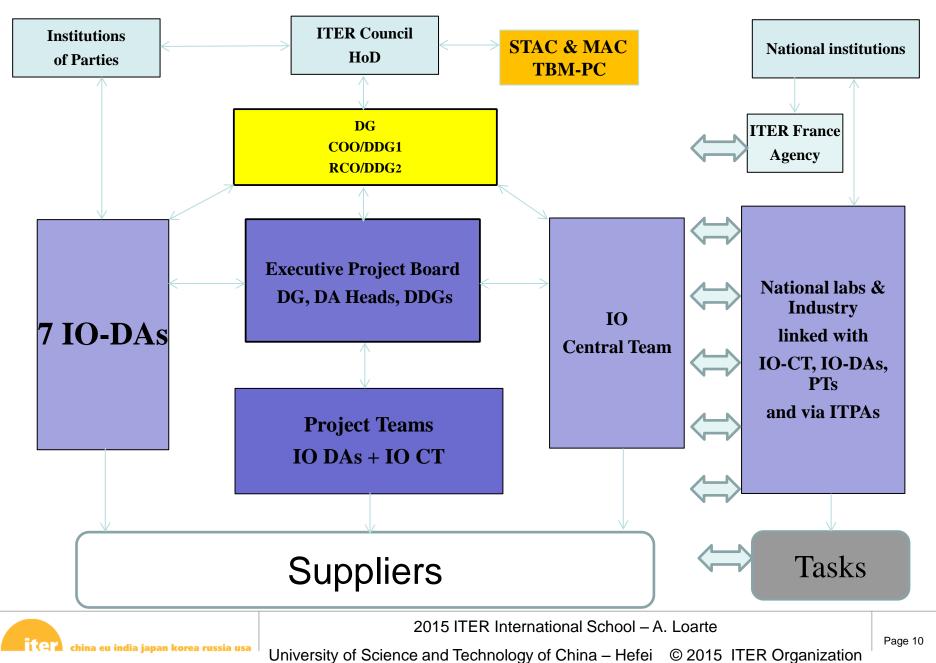
🕻 🤇 🕻 china eu india japan korea russia usa

Who manufactures what?

ITER Project Status

2015 ITER International School – A. Loarte

china eu india japan korea russia usa


Page 8

DG Bigot: 7-Point Action Plan


- 1. The DG is given full authority to take all technical decisions for the best interest of the project; he will benefit from:
- 2. A overall simplified Project-oriented organization characterized by a profound integration of the DAs and the CT for all decisions on technical matters of the Project;
- 3. An Executive Project Board (EPB) empowered to take the needed decisions in due time for an effective global project management;
- 4. A cost effective "Central" Reserve Fund under his control to cover specific operations for the best interest of the project decided by the EPB;
- 5. Tight coordination of the activities of CT and DA staff jointly in charge of specific equipments or tasks through the creation of Project Teams;
- Implementation within the entire organization (CT+DAs) of powerful coordinated tools for establishing a nuclear project culture fulfilling the best world standards;
- 7. New staff regulations for an improved efficiency and cost effectiveness.

2015 ITER International School – A. Loarte

Overall ITER Project Organization

Worksite progress

Construction Status at St-Paul-lez-Durance

2015 ITER International School – A. Loarte

Delivery of Large Components

Exceptional Transport Rehearsal

First Component Installation: 400 keV Transformers

Drain Tank Delivery

Large Drain Tank Transport

2015 ITER International School – A. Loarte

Tokamak Complex

Resting on 493 anti-seismic bearings, the 1.5-metre-thick Tokamak Complex basemat will support 400,000 metric tons of buildings, equipment and machinery. This « B2 slab » was finalized on 27 August 2014; B1+L1 wall and Bioshield construction is underway.

2015 ITER International School – A. Loarte

china eu india japan korea russia usa

Manufacturing progress China

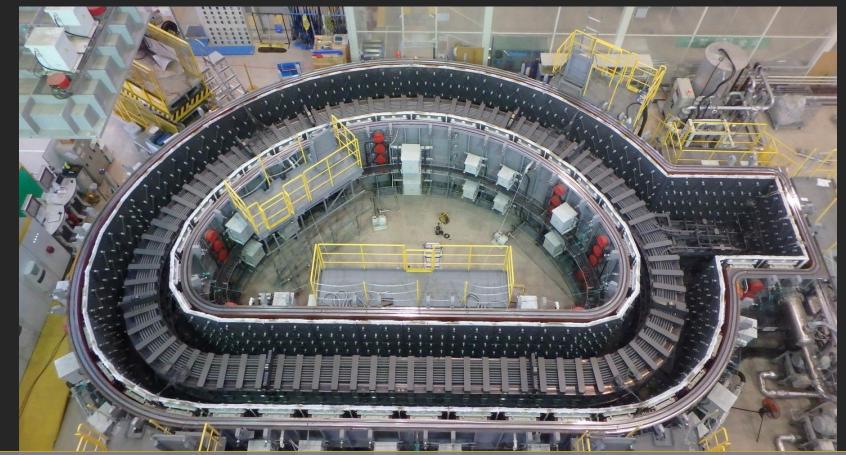
China is responsible for the procurement of 14 poloidal field AC/DC converter units that will provide reliable, controlled DC power to the ITER poloidal field magnetic coils. In February 2015, a prototype converter unit was successfully tested, opening the way to future batch production.

2015 ITER International School – A. Loarte

Manufacturing progress Europe

Europe is responsible for delivering remote handling systems for the divertor, the neutral beam system, in-vessel viewing and metrology, and the cask transfer system for activated components—in all, about EUR 250 million of investment. At the Divertor Test Platform facility hosted by the VTT Technical Research Centre in Finland, the final demonstration of the divertor cassette remote handling system was carried out in February 2015.

2015 ITER International School – A. Loarte


Manufacturing progress India

India is responsible for the fabrication and the assembly of the 30 x 30 m. ITER cryostat. Pictured, six 60° base plates are temporarily assembled at the factory in order to check tolerances prior to shipment to ITER. The first cryostat elements are scheduled to arrive at ITER in November 2015.

2015 ITER International School – A. Loarte

Manufacturing progress Japan

Japan is manufacturing half of the 18 giant toroidal field coils needed for ITER. Here, the D-shaped pancake windings are heat treated at 650 ° C for 100 hours to react tin and niobium to form the superconducting compound niobium-tin.

2015 ITER International School – A. Loarte

tera china eu india japan korea russia usa

Manufacturing progress Korea

In Korea, where two of nine vacuum vessel sectors are under construction, welding is carried out on the upper section of an inner shell—only a small piece of the full component...

2015 ITER International School – A. Loarte

Manufacturing progress Russia

Russia completes its share of toroidal field conductor in June 2015. The milestone marks the end of a fiveyear campaign to manufacture 28 production lengths (more than 120 tons of material).

2015 ITER International School – A. Loarte

Manufacturing progress

The US is responsible for the design, R&D, and manufacturing of the main central solenoid magnet (using conductor supplied by Japan), as well as the associated structure and tooling. At General Atomics' Magnet Technologies Center in Poway, California, winding operations began in April 2015 on a mockup module.

2015 ITER International School – A. Loarte

ITER is moving forward!

ITER is making a successful transition from detailed design to construction

- Tighter integration of technical activities across the project to achieve an improved project implementation and better use of resources
- Moving from large scale prototyping of major components to series manufacture – particularly in critical path areas
 - Substantial expansion of on-site construction activities is
- Deliveries of large components to the ITER facility are now occurring regularly – preparation for Assembly advancing
 - Preparing expansion of collaboration with fusion community to support development of efficient Operations framework

2015 ITER International School – A. Loarte

Principality of Monaco/ITER postdoctoral fellowships 2016 - I

- Partnership Agreement between the ITER Organization and the Principality of Monaco to set up a Postdoctoral Fellowship program signed in 2008
- Five young scientists from the seven ITER Member countries or from the Principality of Monaco appointed every two years, and
 over a period of two years
- Training in research areas related to the ITER project → development of excellence in research in fusion science and technology within the ITER framework
- Brilliancy creativity, together with understanding of the relevance of the individual research interests to the ITER project are a key requirement

Principality of Monaco/ITER postdoctoral fellowships 2016 - II

- To carry out a research project and to participate in publications of high-quality journal articles in fusion science and technology:
 - Burning plasma physics (confinement, stability, plasma-wall interactions, control, energetic particle physics)
 - Heating and current drive physics and technology
 - Fusion plasma diagnostics
 - Superconducting magnet technology
 -
- Conditions for applicants:
 - You are a national of one of ITER Members or of the Principality of Monaco
 - Your PhD was awarded after the 1 January 2013 or you will have received your PhD by the deadline for taking up an award.

Principality of Monaco/ITER postdoctoral fellowships 2016 - III

Time schedule :

- December 2015 \rightarrow External launch of competition (www.iter.org)
- 1 March 2016 \rightarrow Deadline for application
- 1 April 2016 → Candidate interviews
- 1 September 2016 \rightarrow Fellows normally on site
- 31 December, 2016 \rightarrow Latest date for Fellows to take up position on site

On-line application:

- Fill-in online application file

china eu india japan korea russia usa

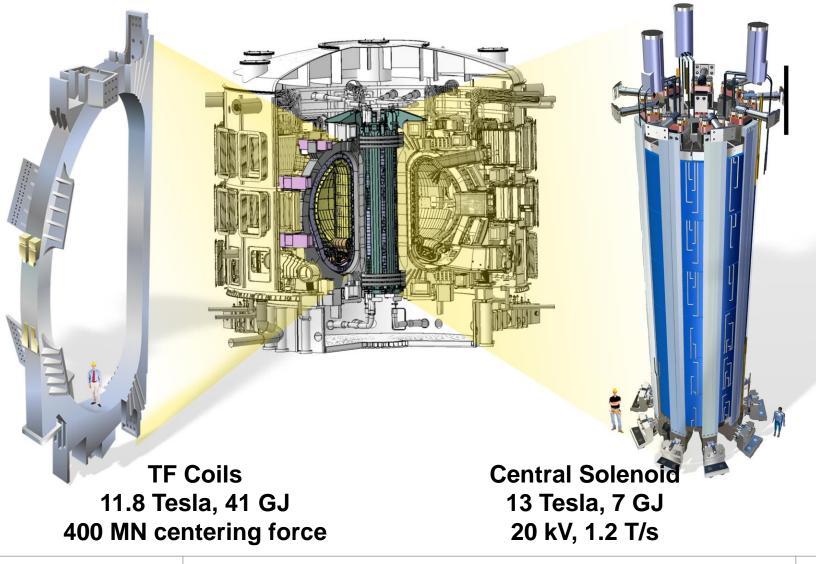
- Upload your Curriculum Vitae (including a selection of your most important publications and photocopies of your highest academic qualification)
- Upload a letter of motivation -- limited to 2 pages
- Three letters of recommendation are also required.

Thank you for your attention

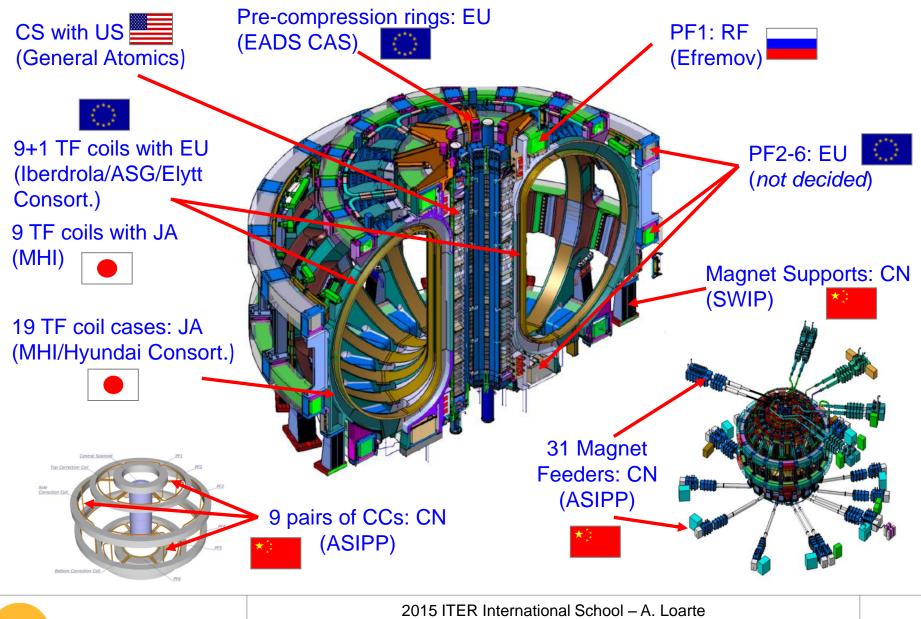
Backup Slides

2015 ITER International School – A. Loarte

china eu india japan korea russia usa


Page 27

Component Transport


2015 ITER International School – A. Loarte

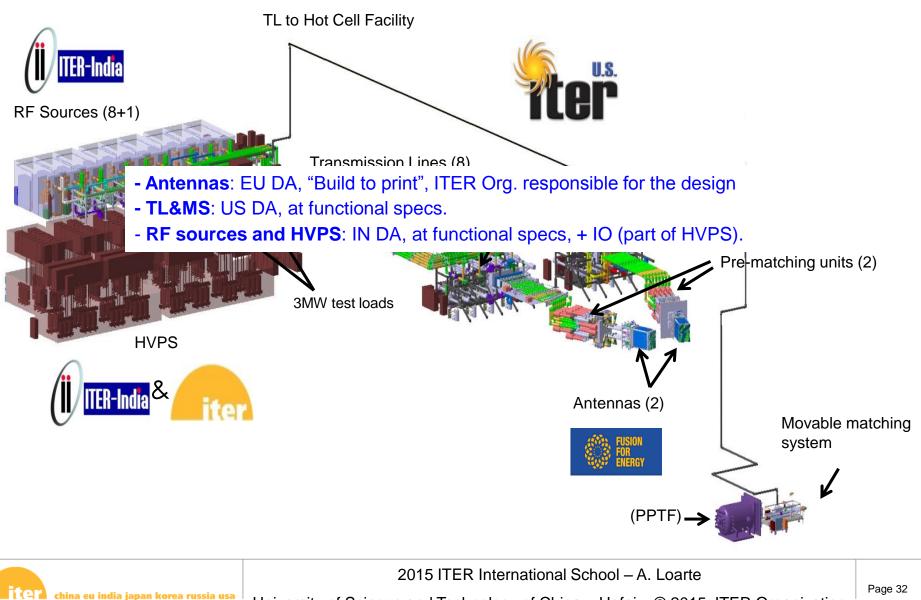
Magnets - Unprecedented Size and Performance

2015 ITER International School – A. Loarte

ITER Magnet Supply: 10 PAs

china eu india japan korea russia usa University of Science and Technology of China – Hefei © 2015 ITER Organization

ITER heating and current drive systems


NB	IC	EC	LH
Neutral Beam - 1 MeV	Ion Cyclotron 40-55MHz	Electron Cyclotron 170GHz	Lower Hybrid ~5 GHz
		Waveguide Very bild Co-direction Co-direc	Hgh power water load Taper section PAM PAM A B coupler B window Mode converter
33MW* +16.5MW [#]	20MW* +20MW [#]	20MW* +20MW [#]	0MW* +40MW [#]
Bulk current drive limited modulation	Sawtooth control modulation < 1 kHz	NTM/sawtooth control modulation up to 5 kHz	Off-axis bulk current drive

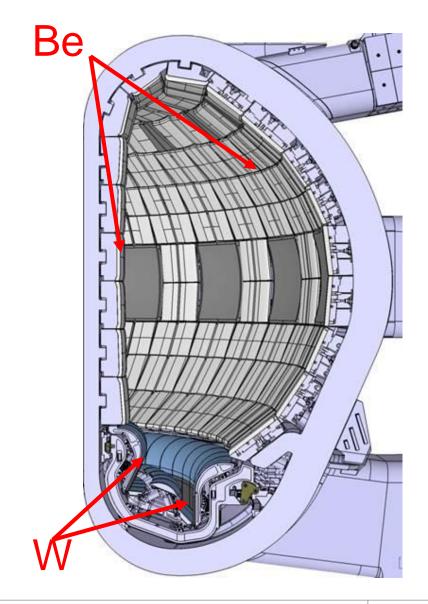
*Baseline Power

[#]Possible Upgrade

2015 ITER International School – A. Loarte

IC H&CD layout and procurement packages

1 MeV NBTF under construction at Padua

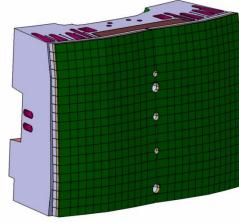


2015 ITER International School – A. Loarte

ITER plasma facing components

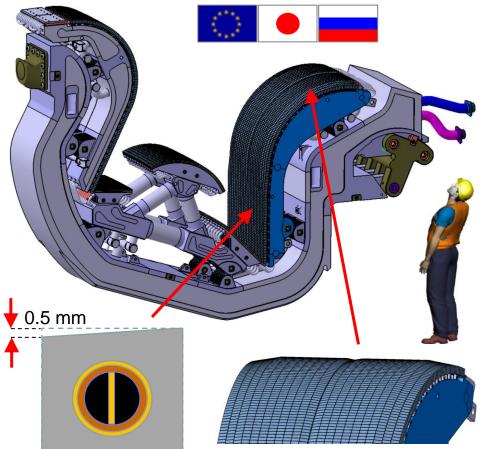
ITER will operate with all-metal Plasma Facing Components

- Beryllium (Be) first wall (~700m²):
 - low-Z limits plasma impurity contamination
 - low neutron activation
 - low melting point plasma transients!
 - erosion/ redeposition \Rightarrow fuel retention
 - dust production
- Tungsten (W) divertor (~150m²):
 - resistant to sputtering
 - limits fuel retention (Be dominates)
 - melting during plasma transients
 - W concentration in core must be held below ~ 2.5 × 10⁻⁵



2015 ITER International School – A. Loarte

Blanket System

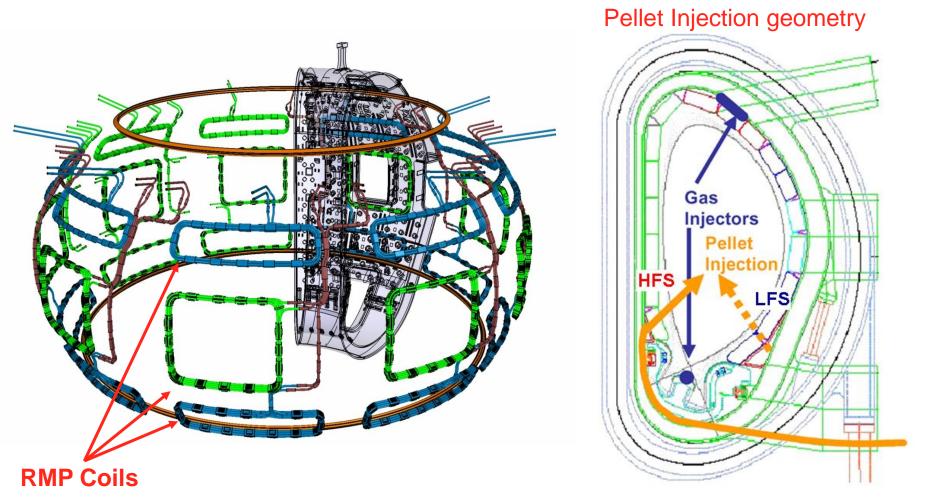

Main functions of ITER Blanket System:

- Exhaust the majority of the plasma power.
- Contribute in providing neutron shielding to superconducting coils.
- Provide limiting surfaces that define the plasma boundary during startup and shutdown.
- Provide passage for and accommodate interface requirements of the plasma diagnostics

2015 ITER International School – A. Loarte

All-Tungsten Divertor

 Particular attention required to shaping for leading edge protection ⇒ avoid worst cases of melting due to transients


- Significant contribution to cost containment for ITER Project
- Experience gained in operation with W-divertor in non-active phase, including development of ELM-mitigation techniques
- Low fuel retention and lower dust inventory

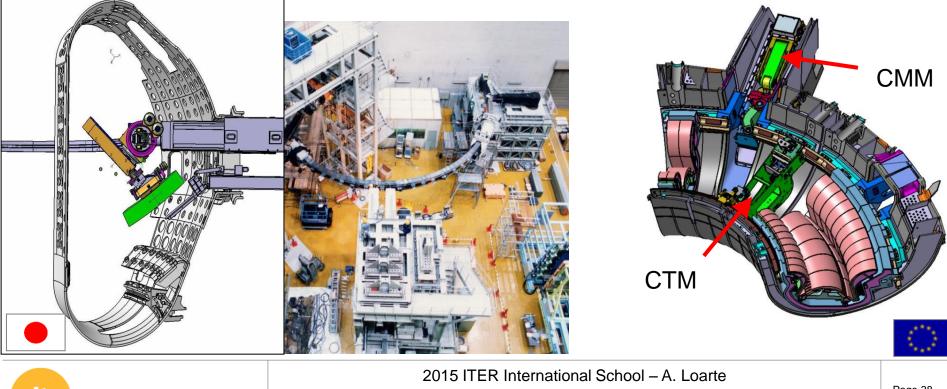
But:

- Will require more cautious approach in non-active phase
- Need to ensure effective disruption and ELM mitigation early in operational period
- Need to develop suitable operational scenarios, particularly for non-active phases of operation

2015 ITER International School – A. Loarte

ITER ELM Control Techniques

- Two principal techniques under development:
 - 3 × 9 array of RMP coils, launching mainly n=4, with 90 kAturn capability
 - high frequency (f ≤ 16 Hz) pellet injection system, allowing f_{inj} ~ 50 Hz

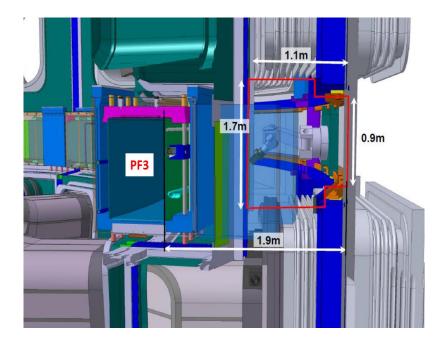

2015 ITER International School – A. Loarte

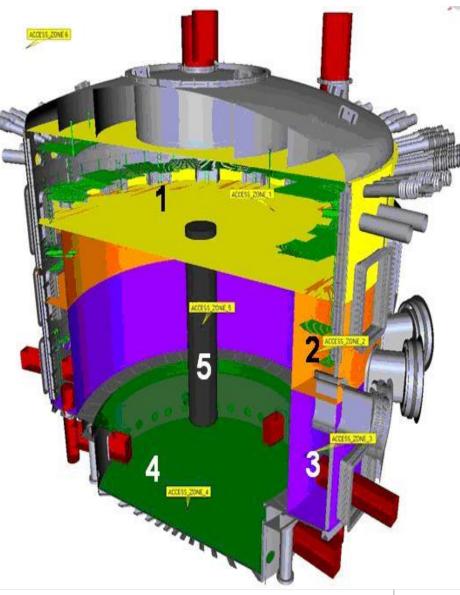
Remote Handling

- A major part of the ITER activity ⇒ extremely challenging to repair and replace complex and heavy components in a nuclear environment
 - Dedicated, state-of-the art systems for both Blanket and Divertor
 - Divertor replacement 2-3 x in the machine lifetime (~6 months to exchange)
 - First wall panels replaced at least once Blanket RH procured by JA

china eu india japan korea russia usa

Divertor RH procured by EU


RH System Procurement Approach


RH System	Procurement Responsibility	Design Status (ongoing)	Industrial Supplier
Blanket RH System		Final Design	Toshiba
Divertor RH System		Preliminary Design	Assystem UK
Multi-purpose deployer	iter	Preliminary Design	-
Neutral Beam RH System		Preliminary Design	ERHA
Cask and Plug Handling System		Preliminary Design	-
Hot Cell RH Equipment	iter	Concept Design	-
RH Supervisory Control System	iter	Preliminary Design	-

2015 ITER International School – A. Loarte

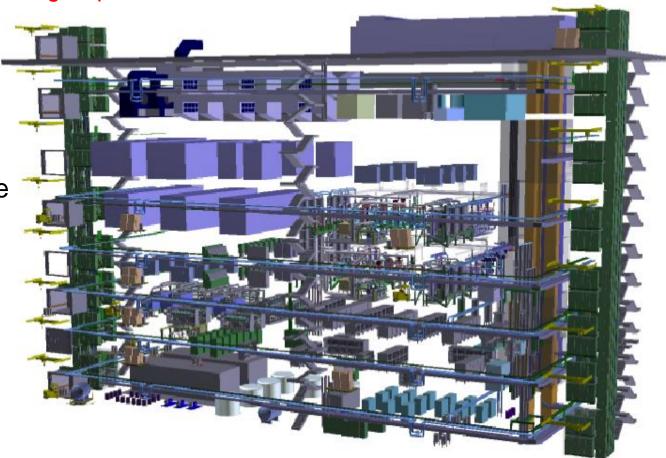
Remote Intervention Inside Cryostat

- Zone 1: Top Cryostat
- Zone 2: From Equatorial Ports to Upper Ports
- Zone 3: From the Pedestal Ring to the Equatorial Ports
- Zone 4: Basement of the Cryostat
- Zone 5: Inside the Central Solenoid Bore

Zone 2: Trolley and manipulator between upper and equatorial ports

2015 ITER International School – A. Loarte

n 🦳 china eu india japan korea russia usa

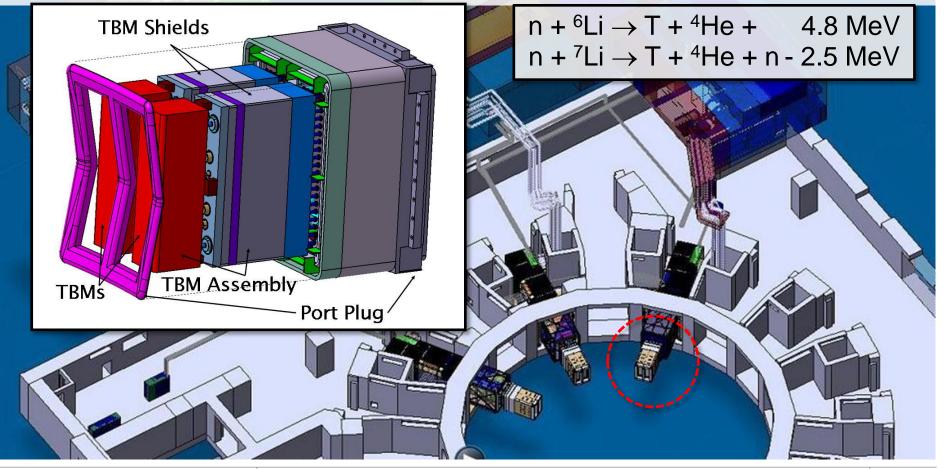

Tritium Plant

- 4 kg of tritium will be stored on-site
- ~100 g tritium required for a standard Q=10 pulse, but only <1% is actually burned:
 - tritium reprocessing required

- 7 Stories
 - 2 below grade

china eu india japan korea russia usa

- L = 80 m
- W = 25 m
- H = 35 m



2015 ITER International School – A. Loarte

Test Blanket Modules

Tritium fuel cycle is a <u>major</u> challenge for <u>all</u> DT fusion devices \Rightarrow ITER will test concepts

-6 modules with different designs, all ITER parties involved

2015 ITER International School – A. Loarte