

Control integration

Federico Felici

Swiss Plasma Center EPFL, Lausanne Switzerland

11th ITER International School San Diego, CA, USA 25-29 July 2022

SWISS PLASMA CENTER

Control integration

Federico Felici

Swiss Plasma Center EPFL, Lausanne Switzerland

11th ITER International School San Diego, CA, USA 25-29 July 2022

SWISS PLASMA CENTER

TCV: Tokamak à Configuration Variable

B_t = 1.5T, I_p<1MA, a=0.25m R=0.88m κ <2.8 19 separately controllable PF coils

TCV: Tokamak à Configuration Variable

- Shape effects on plasma
 - Core, edge studies
 - Negative triangularity, snowflakes
- NBI and ECRH heating
- Plasma control research
 - Formation of advanced plasma shapes & vertical control (1990s-...)
 - MHD control: NTMs, Sawteeth (2000-...)
 - State estimation & Profile control (2010-...)
 - Integrated control (2015-...)

+ Flexible digital control system (100% Simulink-programmable)

B_t = 1.5T, I_p<1MA, a=0.25m R=0.88m κ <2.8 19 separately controllable PF coils

Part 1: Integrated control: architectures and some examples of solutions

Part 2: Software engineering aspects of plasma control integration

Integrated control: key issues and some examples of solutions

Motivation: future tokamak reactors will need to fulfil multiple control tasks with a limited set of actuators

- New control challenges:
 - Simultaneous execution of several (complex) control tasks with scarce actuators.
 - Real-time prioritisation of these tasks based on evolving plasma state/events.
 - Real-time automated assignment of scarce actuators to fulfil various tasks.

Traditional control architectures with separate controllers are not sufficient for next-generation tokamaks

Traditional control architectures with separate controllers are not sufficient for next-generation tokamaks

- Issues for integrated control:
 - Interaction/competition between controllers
 - Time-varying priorities for control
 - Time-varying actuator availability
 - Response to off-normal events

Control integration via Multivariable Controller Design

- Multivariable (MIMO) controller design
 - Design one controller that takes interactions into account explicitly.
 - Necessary when problems are strongly coupled dynamically.
 - Quickly becomes intractable as size of system increases.
 - Examples:
 - Shape control (many coils -> many shape control parameters) [DeTommasi lecture, Tue]
 - q profile (+betaN) control (many control points -> several actuators) [Schuster lecture, Wed]

But: we can not (yet) make one single controller for everything - we will have several separate controllers

EPFL

ITER PCS architecture design:

Supervision layer, controllers, support functions

Supervisory control architectures under study in existing tokamaks

• DIII-D / KSTAR / EAST:

- Finite state Off Normal Fault Response (ONFR) [1]
- ASDEX-Upgrade / ITER:
 - Local/Global exception handling [2],
- TCV:
 - Supervision Actuator Management and Off-Normal Event handling (SAMONE) [3]
 - Control 'task' based approach, described in more details next

[1] N. W. Eidietis, et al, Nucl. Fusion, vol. 58, no. 5, p. 056023, May (2018).[2] W. Treutterer et al, Fus. Eng Des. 117, (2017)[3] Vu IEEE TNS (2021) and references therein

Control tasks:

- Tokamak independent, general formulation for any tokamak
- Represents 'something' that needs to be done by the control system

Separate responsibilities for task handling:

- A <u>supervisor</u> decides control task priorities based on plasma state.
- A set of <u>controllers</u> execute one or more control tasks: receiving plasma state information and compute actuator requests
- An <u>actuator manager</u> decides allocation of resources for prioritized control tasks

Examples of control tasks:

- 3/1 NTM preemption
- 2/1 NTM stabilization
- track q profile reference
- track β reference
- track Ip reference
- track V_{loop} reference
- go to H mode
- stay in H mode

Architecture of task-based PCS: separation between specific interface layer and generic task layer

Architecture of task-based PCS: separation between specific interface layer and generic task layer

Plasma state reconstruction: combine specific diagnostic signals into to generic tokamak state descriptions

[1] C. Galperti et al., IEEE Trans. Nucl. Science 64 (2017) 1446-1454
[2] F. Felici et al., 26th IAEA FEC, 2016 [3] J-M. Moret et al, FED 2015
[4] E. Poli et al., CPC 225 (2018) 36-46 [5] M. Reich et al., FED 100 (2015) 73-80
[6] M. Weiland et al., 27th IAEA FEC (TH/6-3), 2018
[7] T. Blanken al, FED 2019

Event detection example: Real-time plasma confinement state detector using Deep Learning

- Combines convolutional layers (CNN) + LSTM
- Based on [Matos, NF 2020]

Model-based, dynamic state observer: merge model prediction and diagnostic measurements

- Amounts to performing a real-time simulation of the plasma time evolution, with corrections from measurements
 - Known in control literature as dynamic state observer, or Kalman filter.
 - Widely used in robotics, image processing, broad literature exists

e.g. [Kailath, Linear Estimation, Prentice Hall (2000)]

Nonlinear observers: need linearization around nonlinear trajectory

Nonlinear model

$$egin{aligned} &x_{k+1} = f(x_k, u_k) \ &y_k = h(x_k) \end{aligned}$$

- A well-known observer for nonlinear systems is the Extended Kalman Filter (EKF).
 - Evolve state error covariance matrix S_k together with state x_k.
 - Matrices R_k (sensor noise covariance) and Q_k (process noise cov.) to be tuned

$$\begin{split} \hat{x}_{k|k} &= \hat{x}_{k|k-1} + L_k[y_k - h(\hat{x}_{k|k-1})] \quad \text{state meas. update} \\ \hat{x}_{k+1|k} &= f_k(\hat{x}_{k|k}, u_k) \quad \text{Predicted state} \\ L_k &= S_{k|k-1} H_k^T \Omega_k^{-1}, \Omega_k = H_k S_{k|k-1} H_k^T + R_k \quad \text{Kalman gain} \\ S_{k|k} &= (I - S_{k|k-1} H_k^T \Omega_k^{-1} H_k) S_{k|k-1} \quad \text{covariance meas. update} \\ S_{k+1|k} &= F_k S_{k|k} F_k^T + G_k Q_k G_k^T \quad \text{covariance time update} \end{split}$$

Other nonlinear filtering methods exist e.g. Unscented KF ...

EPFL

Need Jacobians

 $egin{aligned} F_k &= rac{\partial f}{\partial x_k}\ G_k &= rac{\partial f}{\partial u_k}\ G_k &= rac{\partial h}{\partial h} \end{aligned}$

'Kalman gain' reflects confidence in models vs measurements

- If the system is linear, the Kalman Filter is the optimal filter
 - Gives the smallest state error covariance w.r.t. any other filter
- Though all systems are nonlinear, we can still use KF
- Useful features:
 - Model-based filter to remove diagnostic noise and obtain estimated states
 - (e.g. velocity from position measurements)
 - Can treat uncertainties in model parameters
 - Can represented as fictitious process noise entering the state equation
 - Can define *augmented* state = [plasma state; model parameters] to be estimated
 - Diagnostic fault detection
 - Single diagnostic residual increases \rightarrow detect fault \rightarrow eliminate from update law.
 - Anomaly detection
 - Sudden deviation of a set of diagnostic measurements from model → trigger disruption mitigation.

Example: real-time density profile reconstruction on ASDEX-Upgrade using state observer

- RAPDENS model (related to RAPTOR)
 - Model combining 1D profile evolution and particle inventory model.
 - Update to these predictions using interferometer
 & bremsstrahlung measurements
 - Detection and rejection of diagnostic faults and model inaccuracies.
- Needs
 - Real-time capable simulator for 1D profiles
 - Ad-hoc models for transport coefficients + sources
 - Real-time diagnostics
- Future improvements of models, or diagnostics, feed into same state observer, no need to change controller.

[T. Bosman, Fus. Eng. Des, 2021] TCV implementation [F. Pastore, Poster Tuesday]

Example: real-time density profile reconstruction on ASDEX-Upgrade using state observer

- RAPDENS model (related to RAPTOR)
 - Model combining 1D profile evolution and particle inventory model.
 - Update to these predictions using interferometer
 & bremsstrahlung measurements
 - Detection and rejection of diagnostic faults and model inaccuracies.
- Needs
 - Real-time capable simulator for 1D profiles
 - Ad-hoc models for transport coefficients + sources
 - Real-time diagnostics
- Future improvements of models, or diagnostics, feed into same state observer, no need to change controller.

[T. Bosman, Fus. Eng. Des, 2021] TCV implementation [F. Pastore, Poster Tuesday]

Details of 'Task'-based control layer

Details of 'Task'-based control layer

Plasma state monitor translates continuous-valued plasma state estimate into discrete states

[T. Blanken NF 2019]

- Discrete representation of plasma state (including events)
 - Receives continuous-valued information from state reconstruction.
- User-configurable thresholds
 - Different thresholds for each tokamak.

EPFL

Details of 'Task'-based control layer

Supervisor: map discrete-valued plasma state description into prioritized tasks

Rule-based mapping. Example:

	Plasma parameters are within defined 'normal' bounds	A 2/1 NTM is present (size = SMALL or MEDIUM)	A 2/1 NTM is present (size == LARGE)
Tasks (prioritized)	 2/1 NTM preemption β control q profile control 	 2/1 NTM stabilization β control with lower reference 	 Perform soft-stop (ramp-down)
Control task parameters	 High β reference. 2 MW EC on q=2. 	 Lower β reference. Increase EC power on q=2 until NTM is stabilized. 	 Appropriate soft-stop trajectory given present state. (OR trigger disruption mitigation etc)

Details of 'Task'-based control layer

Actuator manager decides in real-time which actuator resources are assigned to which control tasks

- Constrained optimization problem with both integer and continuous variables.
 - Heuristic approach works for case with few actuators / tasks.

Example of RT actuator allocation for ITER control tasks see [T. Vu et al, Fus. Eng Des 2019]

Mixed-integer quadratic programming formulation of actuator allocation problems

[E. Maljaars & F. Felici, Fus. Eng Des 2017]

- Resource allocation problems have often been formulated in a flexible format as Mixed Integer (Quadratic) Programming problems
 - Optimization problem involves integer (and continuous) variables

```
\begin{array}{ll} \underset{X}{\text{minimize}} & J(x) = x^{\top} H x + f^{\top} x \\ \text{subject to} & A_{ineq} x \leq b_{ineq} \\ & x_{min} \leq x \leq x_{max} \\ & x_i \in \mathbb{N} \end{array}
```

- Cost function: things that are desired (easy to add/remove terms)
 - Actuator allocation: promote good / penalize bad allocations
- Constraints: things that must be satisfied (easy to add/remove terms)
 - For actuator allocation: actuator availability and allowed allocations

Details of 'Task'-based control layer

Controllers execute (one or several) control tasks, receive resource allocations and send resource requests

- Generic interfaces for all controllers
- Enables use of resource-aware controllers (e.g. Model Predictive Control)
 - More details & examples in [Schuster, lecture Wednesday)

Details of 'Task'-based control layer

Actuator interface translates generic actuator commands into (hardware-)specific commands for a given tokamak

Example of ITER EC actuator interface proposal

See [G. Carannante proceedings EC-21 conference (2022)]

Function 1: Knowing where EC power is being deposited now

 NB Plasma information comes from plasma state reconstruction support functions

Example of ITER EC actuator interface proposal

Function 2: Describe potential availability, now and in the future

PCS algos needing this info	Actuator interface Actuator availability in terms of P _{dep} , rho _{dep} , I _{ECCD}	Translate availability in terms of k vector, power per mirror into rho, I_current drive	Per launch point , calculate: Availability of power, location, k & polarization vectors, (present and future)	Calculate set of potential states of EC system components (present and future)	Local readback of EC system component state + potentially settable states

 Needs representation of EC availability in terms of power/ polarization/angles of last mirror.

- Representation to be determined, likely a set of inequality constraints, or a tree
- Include mutual exclusion conditions etc

Example of ITER EC actuator interface proposal

Function 3: 'Command' to inject EC at desired location

PCS control task prioritization	PCS command: "Deposit to given rho with given power and I _{cd}	Decide X or O mode. Determine launch point, k vector, etc to achieve desired deposition. Find polarization vector at mirror for desired O/X mode.	Decide how to set launchers/gyrotrons/ switches/tl/polarizers to actuate command.	Positioning of mirror angles, polarizers, switches	Local control of EC system components
		(inv. ray tracing + optimization if multiple solutions)			

Separation of concerns:

- Actuator management on PCS side does optimization based only on effect of EC on plasma (+wall) in terms of rho, I_{ECCD}, P_{absorbed}, and decides desired EC system state at launch points.
- EC system decides how to actuate EC system components to obtain desired EC power at launch points.

Implementation aspects to promote algorithm portability

- Try to strictly separate parts of PCS software:
 - Tokamak-dependent / Tokamak-independent
 - PCS-dependent / PCS-independent

Outlook for supervisory control

- Architectures are being tested successfully on various tokamaks
 - Also enable new experiments studying physics in better-controlled ways
- Solid, extensible architecture designed for ITER
- Tricks are in the details: implementing and validating:
 - State observers giving us all the physics quantities we need to know in real-time
 - Event detectors for all the N events we care about
 - Controllers for everything we want to control
 - Incl. resource-aware controllers, predictive controllers, ...
 - Program it all, validate and test it all
- From the control point of view, present research-oriented tokamaks are a dream
 - Many diagnostics, many flexible actuators -> 'pay' in control complexity
- What about a fusion reactor?
 - Run one scenario but fewer diagnostics and actuators

Implementation challenges and software aspects

A hierarchy of models is needed for different phases of controller design/validation/verification

Pre-shot model-based validation of discharge program ...

... & feedback of experimental data into model

Pre-shot model-based validation of discharge program ...

... & feedback of experimental data into model

- Operational limit checking:
 - Check that discharge program does not exceed operational boundaries (though we have real-time protection systems)
- Use best available "Flight Simulators" in closed-loop with a PCS (simulated or real)

Pre-shot model-based validation of discharge program ...

... & feedback of experimental data into model

- Operational limit checking:
 - Check that discharge program does not exceed operational boundaries (though we have real-time protection systems)
- Use best available "Flight Simulators" in closed-loop with a PCS (simulated or real)
- Deviations between pre-shot validation simulation and post-shot data contains valuable information
 - Improvement of models by changing device-specific parameters.
 - The physics we are trying to learn
 - Feed improved understanding into better models used for future control validations
 - Validated models (the code itself) are one of the key products of operating a tokamak

Managing workflows of different stages of software validation is challenging but essential for future devices

- Validation of PCS software via closedloop simulations with plant models
- Verification & validation tests on:
 - Control software
 - Model software used to test the controls
- Need to do this:
 - Over ITER lifetime (several decades)
 - On several parallel versions of PCS software for various stages
 - While dozens++ of contributors propose changes and upgrades
- This is a "Large Software Project"
 - Need concepts from software engineering: continuous integration / deployment / DevOps

From [P. de Vries et al. Fus. Eng. Des 2018]

Continuous Integration (CI)

- Automated, fast & frequent feedback of effects of code changes!
 - Requires codes with TESTS

The importance of testing in software engineering

- Write tests together with code
 - For given input, expect a given output
 - As functionality expands, expand test suite
- Establish a 'contract', fixing expected code behaviour
- Run tests automatically and regularly

Types of tests

- Various levels of testing:
 - Unit testing: test small functional units of code e.g. test an ODE solver
 - Integration tests: Tests of useful combinations of units
 - End-to-end tests: Test the whole thing
- Various aspects of Plasma Control software to be tested:
 - Functional tests of individual controllers (ITER: PCSSP)
 - Functional tests of combinations of controllers (ITER: PCSSP)
 - Tests that control code in simulation code same behaviour as code in production
 - PCSSP version vs RTF version (could be the same)
 - Hardware-in-the-loop tests
 - Tests of production PCS on real-time capable model of the whole system

The DevOps confusion

From: https://www.devops.ch/2017/05/10/devops-explained/

maximize **change**

Control algorithm developer

The DevOps confusion

Control algorithm developer

Tokamak operator

The DevOps solution

- Dev: Automate (to the extent possible) all testing and deployment
 - Continuously test and deploy new software
- Ops: Provide platform for dev as close as possible to the real thing
 - The real-time control software environment + the models on which to test
- Run through this loop frequently

Promote frequent, rapid, small iterations

- Controllers and models are ultimately software projects
 - Transition from demonstrations or in-house tools to 'production' level codes
 - Role of open-source? -> leverage power of the community
- Software industry has developed methods for harnessing large collaborative software projects
 - Culture in fusion community has lagged behind, but is catching up
 - Promote this culture and educate ourselves on best practices / tools
- Essential role of software 'digital twins' for future tokamaks

T. Todd, in R. Dendy Plasma Physics p. 448 (1993)

EPFL Graduate Course - Control & Operation of Tokamaks

Next edition: February 2023 contact <u>federico.felici@epfl.ch</u> for more information

EPFL

F. Felici - Control Integration - ITER International School - San Diego July 2022

Implementation of q profile + β control on TCV including plasma state reconstruction.

3 Tasks:

Task name	Activation	
Central co-CD	[0.4s-0.55s]	
2/1 NTM	[0.5s-2.5s]	
stabilization	+NTM presence	
eta control	[0.5s-2.5s]	

2 Actuators:

Actuator name	Туре
EC launcher L4	co-CD (0.5MW)
EC launcher L6	co-CD (0.5MW)

For more details:

[T. Blanken Nucl. Fus. 2019] [T. Vu Fus. Eng. Des. 2019]

2/1 NTM onset (panel (f)), NTM stabilization takes priority 1, requests 0.5MW and gets L4 β control is activated as well, requests 1MW, but gets only the remaining L6 due to its lower priority

TCV example: simultaneous NTM stabilization and β control with real-time task prioritization

β control only, with both L4 and L6

6 NTM is detected and NTM stabilization takes priority 1

Asynchronous response - intervene when threshold is exceeded

- Deviate from 'nominal' scenario to 'recover' the discharge
 - Should catch 'most' of remaining 1% cases
- Detect and track multiple events simultaneously
- Need to track various events:
 - Exceeding of limits related to proximity control
 - (N)TM presence / locked modes
 - Sawteeth, Minor disruptions
 - ELMs, Impurity influx
 - MARFE onset
 - (Real-time detectors needed for all these quantities..)
- Respond by targeted recovery actions, or ramp-down
- Leave as few cases as possible for DMS triggering

Repeated recovery of discharge based on MARFE position monitoring, acting on gas & heating [B. Sieglin, M. Maraschek, M. Bernert ASDEX Upgrade]

EPFL

58

EURO*fusion*

Outlook: towards resource-aware NTM control

- First: Modified Rutherford Equation (MRE) model for w_{NTM}(t)
 - Including empirical Δ '(w) for TCV.
 - Reproduces island width evolution w(t) from w=0 to w=wsat
 - [M. Kong, NF 2019]
- Solving MRE in PCS resource-aware NTM controller
 - Estimate required power & deposition location for NTM preemption
 - Estimate required power for NTM suppression
 - Continuously update estimates **Plasma and Actuator State Reconstruction** based on plasma state RAPTOR MHD MRE **RT-diagnostics** observer analyses observer Realized actuator **RT Liuge** Plasma & actuator RAPTOR MRE commands states and limits predictor predictor Torbeam User parameters Sawtooth Density detector observer **External Library Blocks** Activation Power w(t) Assigned resources evaluation evolution Controller requests (range of power, ρ , CD) NTM Plasma & actuator controller Core MRE solver states Controller commands dw (power, ρ , CD) $\frac{dt}{dt} = f(w,t)$ Controller parameters per task

Outlook: towards resource-aware NTM control

- First: Modified Rutherford Equation (MRE) model for *w_{NTM}(t*)
 - Including empirical $\Delta'(w)$ for TCV.
 - Reproduces island width evolution w(t) from w=0 to w=wsat
 - [M. Kong, NF 2019]
- Solving MRE in PCS resource-aware NTM controller
 - Estimate required power & deposition location for NTM preemption
 - Estimate required power for NTM suppression

Simulation of real-time MRE-based control of NTMs: continuously predict w_{ntm}(t) evolution

• TCV experiment:

- Sweep 800kW EC beam across q=2 surface.
- NTM stabilized when $\rho_{\text{dep}} \, \text{crosses} \, \rho_{\text{q=2}}$

Simulation using MRE model:

- Predict w(t) time evolution for different EC power levels.
- Predicts NTM stabilization at expected time for this power level.
- Predicts that lower power would not have stabilized the mode.

