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Objectives of Talk

• Learn some control terminology

•Understand relation between scenario and control

•Develop some intuition about control concepts

- Details occasionally (and intentionally) omitted

•Understand the multiple objectives of control
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• Every control problem starts with a Plant = the system you wish to 
make behave in some desired way.  Includes:
– The core "machine" (tokamak + plasma) 
– Actuators = devices that cause the plant to change behavior (e.g., 

power supplies, gas valves, ECH, NBI)
– Measurements = information used to see how closely the machine does 

what you want (e.g., flux loops, B-probes, CO2 interferometer, ECE)
§ Other names = "diagnostics", "sensors"

• Control = logic that tells actuator(s) what actions to take to get plant 
to behave as you want
– Feedforward control = send pre-determined time dependent command 

to actuator
– Feedback control = send new command to actuator at regular intervals 

based on measurements

What is tokamak or plasma control?
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Relation between scenario and control

• Scenario = the objective(s) of control
– E.g., desired plasma shape, or density, or beta, ...
– Typically input to controllers as (time-dependent) targets ("references")

• Control = method of achieving those objectives
– Perfect knowledge of system to be controlled & no noise or disturbance

=> use feedforward control to program the time evolution of system 
actuators to achieve the scenario: 

• PF coil power supply voltages, injected gas, heating powers, etc. 
– System knowledge is never perfect (usually far from it).
– No system is noise- or disturbance-free.
– Feedback control is used to compensate for: 

• imperfect knowledge of system (model uncertainty)
• measurement noise
• disturbances
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Model-based Control Design Process

1. Make system model
2. Verify model predicts behavior of system
3. Design controller
4. Test using models in closed-loop simulation
5. Implement and experimentally tune implementation
6. Deploy in routine operation

• Using only 5-6 is feasible and often successful – why do steps 1-4?
– Experimental tuning cost = $50,000 - $100,000 per day on present devices
– Performance:

– Large systems (many inputs / outputs) difficult to tune properly for best control
– Nonlinear systems can require retuning over many equilibrium states. 

– Even if chosen approach, models useful to understand how control affects system 
– Device risk while testing (empirical control is usually bad before its good)

• Next Generation devices (e.g. ITER) will not allow empirical tuning
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• A Block Diagram consists of two parts:
– Operations (blocks in diagram) 
– Signals (arrows in diagram)

• Example (poloidal field system producing plasma shape)

• Equivalently, hiding all details ("open-loop system"):

Introduction to System Representation - Block Diagrams

Power 
Supply

Plasma / 
conductors

Control 
parameter 

transformation

Power Supply
Commands

Shape & Position 
Parameters 

(e.g. gaps, X point R,Z)
V B,y,I

Shape Control 
Plant

Power Supply
Commands

Shape & Position 
Parameters 

(e.g. gaps, X point R,Z)

ITER
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System Representation – State Space Model 
(Ordinary Differential Equations)

• State Space Models 
– General (x is "state"):

– Note ordinary differential equation (ODE) is 1st order
– Linear, time-invariant (LTI) system:

– Shape control example (states=plasma+conductor currents) :

– I(t) = toroidal conductor currents (states x); M*=mutual inductance matrix (modified 
by plasma response), R=resistance matrix 

– y(t) = coil currents, flux and field in vacuum region; C*=green functions (modified by 
plasma response)

– v(t) = input voltage from power supplies; U = ones for coils, zeros for vessel 
conductors

System
u(t) y(t)

ITER

=>
!I = AI + Bv
y = C*I

(A = −M*
−1R, B = M*

−1U )
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!x(t) = f (x,u,t)
y(t) = g(x,u,t)

!x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

M*
!I + RI =Uv

y = C*I



System Representation – Laplace Transform

• Definition: For a given function f(t) with f(0)=0, Laplace transform of f is:

• Nice properties:

• For an example of how it's used, apply to :
complex ("s") plane

("frequency domain")
!x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

sX (s) = AX (s)+ BU (s)
Y (s) = CX (s)+ DU (s)

sX (s) = AX (s)+ BU (s) ⇒ (sI - A)X (s) = BU (s) ⇒ X (s) = (sI - A)−1BU (s)

Y (s) = CX (s)+ DU (s)
= C (sI - A)−1BU (s)+ DU (s)

Y (s) = C (sI - A)−1B + D⎡⎣ ⎤⎦U (s)

F(s) =L f (t){ } = e−st f (t)
0

∞

∫ dt, s =σ + jω

L df
dt

⎧
⎨
⎩

⎫
⎬
⎭
= sF(s), L d 2 f

dt2
⎧
⎨
⎩

⎫
⎬
⎭
= s2F(s), etc...

L f (τ )
0

t

∫ dτ{ } = 1s F(s)
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System Representation - Transfer Functions

• Transfer Function = ratio of Laplace Transforms of (scalar) output and input signals: 

• Example (simple mechanical system; x is displacement): 

• Example (lowpass RC filter):

• General LTI case, from previous page:

• If Y, U are scalars:  (Single-Input-Single Output (SISO) system)

• If Multi-Input-Multi-Output (MIMO) system, each element in matrix 
is a scalar transfer function, so it's still called "transfer function"

Vin VoutCR

m!!x(t)+ d !x(t)+ kx(t) = u(t) ⇒ (ms2 + ds+ k)X (s) =U (s) ⇒ X (s)
U (s)

= 1
(ms2 + ds+ k)

⇒
Vout (s)
Vin(s)

= 1
RCs+1

Y (s) = C (sI - A)−1B + D⎡⎣ ⎤⎦U (s)
Y (s)
U (s)

= C (sI - A)−1B + D

C (sI - A)−1B + D
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Y (s)
U (s)



System Representation - Equivalent Representations

• Block Diagram State Space (1st order ODE) Transfer Function

mechanical 
system

RC
filter

Shape 
Control 
System

force
u

displacement
x

Vin Vout

PS
Commands

Shape 
Parameters 

Y (s)
V (s)

= C* (sI + M*
−1R)−1M*

−1U

(v = velocity)

!Vout = − 1
RC
Vout +

1
RC
Vin

y =Vout

Y (s)
Vin(s)

= 1
RCs+1

m 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥
d
dt

v
x

⎡

⎣
⎢

⎤

⎦
⎥ +

d k
−1 0

⎡

⎣
⎢

⎤

⎦
⎥
v
x

⎡

⎣
⎢

⎤

⎦
⎥ =

u
0

⎡

⎣
⎢

⎤

⎦
⎥

y = 0 1⎡
⎣

⎤
⎦
v
x

⎡

⎣
⎢

⎤

⎦
⎥ = x

Y (s)
U (s)

= 1
(ms2 + ds+ k)
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M*
!I + RI =Uv

y = C*I



+
+

System Representation – Feedforward/Feedback

Power 
Supply

Plasma / 
conductors

Control 
parameter 
calculation

com shape 
params

V B,yFeedback
Controller

shape
request 

error
+

Feedforward
Controller

++
-

Power 
Supply

Plasma / 
conductors

Control 
parameter 
calculation

com shape 
params 

V B,yshape
request 

Feedforward
Controller

Power 
Supply

Plasma / 
conductors

Control 
parameter 
calculation

com V B,yFeedback
Controller

shape
request 

error
++

-

Open-Loop Control

Closed-Loop Control

shape 
params 

Combined
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• What is undriven "natural" behavior of system?

• Defined by the eigenvalues l :

• An arbitrary vector x can be expressed as sum of eigenvectors:

• Then: 

• That is, we can analyze system as n scalar ODE's: 

• To determine stability of the system:

• If ANY eigenvalue has Re(l)>0 => system is UNSTABLE.
• Otherwise, system is STABLE.

Analysis of Dynamics (Time Dependent Behavior)

complex-plane
(               )

(stable)
(unstable)

x

unstable l

stable l
x

!x(t) = Ax(t)+ Bu(t)

x = α k xk
k=1

n

∑
Ax = α k Axk

k=1

n

∑ = α kλk xk
k=1

n

∑ ⇒ !x = α k !xk
k=1

n

∑ = α kλk xk
k=1

n

∑

σ k = real(λk ) < 0 ⇒ xk (t)→ 0, t→∞
σ k = real(λk ) > 0 ⇒ xk (t)→∞, t→∞

λ =σ + jω
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λx = Ax

!xk = λk xk ⇒ xk (t) = e
λkt xk (0)



• Poles and zeros of Transfer Functions:
– Complex function theory terminology:

• Roots of denominator polynomial a(s) = poles
• Roots of numerator polynomial b(s)= zeros

• If ANY poles have s=Re(s)>0, system is UNSTABLE,  
• otherwise, STABLE. (Explanation in a moment.)
• Examples:

Analysis of Dynamics (Laplace Domain)
complex-plane

(               )

has 1 poles (in LHP) and no zeros  => STABLE

LHP RHP

has 2 poles (in LHP) and no zeros => STABLE

(high-pass filter) has 1 pole (in LHP) and 1 zero (at 0) 
=> STABLE

LHP/RHP = Left/Right Half Plane

xx
x

x
o o o

polynomials y(s)
u(s)

= b(s)
a(s)

Vout (s)
Vin(s)

= 1
RCs+1

Y (s)
U (s)

= 1
(ms2 + ds+ k)

Vout (s)
Vin(s)

= RCs
RCs+1
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• Eigenvalue is a complex number l satisfying:
– for some            
– ó does not exist 
– ó determinant

• Note similarity to portion of Transfer Function: 

• In fact, 

• A common situation is D=0, so that the transfer function is:

• That is, the POLES of transfer function = roots of             = EIGENVALUES of A

Analysis of Dynamics (Time vs. Laplace Domains)

where:

polynomial in s

matrix of 
polynomials in s

x ≠ 0

Y (s) = C (sI - A)−1B + D⎡⎣ ⎤⎦U (s)

X = determinant of X

Adj(X ) = adjugate of X (matrix of cofactors)
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(λI − A)x = 0
(λI − A)−1

λI − A = 0

(sI − A)−1 = 1
sI − A

Adj(sI − A)

Y (s)
U (s)

= C (sI - A)−1B = 1
sI − A

CAdj(sI − A)B

sI − A



complex-plane
(                    )

x

x xx

Understanding System Response – Correspondence 
Between Eigenvalue (Pole) Location and Time Response

x
x

x

x
s = λ =σ + jω
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!xk = λk xk ⇒ xk (t) = e
λkt xk (0)



• Recall Laplace Transform definition:

• Restrict to jw axis obtains Fourier Transform if f(t<0)=0 :

• For a system with transfer function Y(s)/U(s),

• System Gain is defined to be 

• System Delays: Two types:
– Phase lag = frequency dependent time delay

– Pure delay  = frequency independent time delay 

Understanding System Response – Frequency Response

gain

pure
delay

low frequency = small delay,  high frequency = large delay

F(s) =L f (t){ } = e−st f (t)
0

∞

∫ dt

F( jω ) =F f (t){ } = e− jωt f (t)
0

∞

∫ dt

Y ( jω ) U ( jω )

Y ( jω )
U ( jω )

=
Y ( jω ) e j⋅phase(Y ( jω ))

U ( jω ) e j⋅phase(U ( jω ))
Y ( jω ) U ( jω )

lag = phase(Y ( jω ))− phase(U ( jω ))
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• Examples:

Understanding System Response – Bode Plots of 
Frequency Response

Lowpass filter Highpass filter

phase lag

phase lead

gain "roll-off"

gain(jw=0)=1

gain(jw =0)=0

NOTE: Bode gain plot is ratio of powers (20log10(amplitude ratio)).

Vout (s)
Vin(s)

= RCs
RCs+1

Vout (s)
Vin(s)

= 1
RCs+1
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• Control plasma major radius:
- Assume plasma current (Ip) is positive
- Radial hoop force FR pushes plasma outward
- Vertical field (Bz) produced by outer coils 

holds it in a fixed location (regulation) ...
- ... or moves plasma in/out to match a time-

dependent request (tracking)

Objectives of Control – Tracking and Regulation

tokamak positive current sign 
convention (viewed from above)
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• Control plasma elongation:
- Increasing elongation (k) has been shown 

to improve performance (scenario choice), 
so we want to control:

- Control accomplished by "pulling" on top 
and bottom of plasma

- Control objective = produce either fixed 
(regulation) or varying (tracking) 
elongation

Objectives of Control – Tracking and Regulation
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• Derivation of Closed-Loop Transfer Function:

• What we want:

commandsK(s)requested
params 

error
++

- controlled
params 

Objectives of Control – Tracking and Regulation

G(s)
Controlled System

(Plant)
Feedback Controller

r(s) p(s)

~1 in
control 
band

~0 at high 
frequencies

large at low 
frequencies

small at high 
frequencies

Open-Loop 
Transfer 
Function

Closed-Loop 
Transfer 
Function

G(s)K(s)

20

p(s) = G(s)K(s)(r(s)− p(s))
(1+G(s)K(s))p(s) = G(s)K(s)r(s)

⇒ p(s)
r(s)

= G(s)K(s)
1+G(s)K(s)

G(s)K(s)
1+G(s)K(s)



Objectives of Control – Stabilize System Instability

• Open-loop instability:

• Plasma elongation causes vertical 
instability (destabilizing curvature):

FEEDBACK

applied
force

applied
force

FEEDBACK

Anti-symmetric coils 
provide radial field to 

apply force that opposes 
plasma vertical motion
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• Gain cannot be considered 
independently from phase.

• If gain > 1 ....

• ... when phase = -180 (opposite sign)

• => positive-feedback at that frequency 
and result is control-driven instability...

x

x

... and closed-loop 
transfer function has 
pair of poles in RHP  

control pushes too hard

system "overshoots"

control pushes too hard

22

Performance Requirements – Avoid Control-driven 
Instability (Too high control gain => instability)



• Need to consider both gain AND phase:

large at low 
frequencies

small at high 
frequencies

Pay attention to stability 
(phase) in the middle

Gain margin

Phase margin

• Need gain <<1 for phase=-180o

• Need phase lag << 180o for gain >1

(Gain/Phase margins are one 
example of stability margins.)

Previous gain K reduced to achieve 
positive gain and phase margins.
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Avoid Control-driven Instability 



• Consider plant 
used in Bode 
plots:

• Root Locus
diagram shows 
stability changes  
with K:
- Open-loop 

stable plant
- Stable closed 

loop, K=10
- Unstable 

closed loop,  
K=200

commandsK
requested

params 

error
++

- controlled
params 

Avoid Control-driven Instability - example

PlantFeedback Controller

r(s) p(s)

open-loop 
poles (x) K=10 poles => 

stable closed loop

Increasing gain 
K => eventually 

unstable

x

x
x

x

xx

Root Locus
Diagram (in s-plane) 

2e8
s3 + 2100s2 + 2.2e6+ 2e8
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P(s) T(s) C(s)com

V disturbance: dV(s) B,y disturbance: dB(s)

K(s)
shape request error++

- shape params 

Objectives of Control – Disturbance & Noise Rejection

+

++
+

+ +
+

noise: n(s)
+

+
Power Supply Plasma/conductors calc control paramsController

• Disturbance rejection means ratio of norms of errors to input is small:

• Noise rejection means ratio of norms of errors to input noise is small:

• These are ensured by making norms of transfer functions small, e.g.:

• For example, large gains in controller K can make this small.

r(s) p(s)

error: e(s)

=> attenuates effect of disturbances

=> attenuates effect of noise

25

e(s)
n(s)

≪1

e(s)
dV (s)

≤ −(I +CTPK )−1CT ≪1 => effect of V disturbance is small

e(s)
dV (s)

≪1,
e(s)
dB(s)

≪1



Performance Requirements – Time Domain

rise time 

• Typical Specifications on Step Response:
– Rise Time < X seconds
– Percent Overshoot < Y %
– Settling Time < Z seconds (within e %)

90% 

10% 

overshoot

settling time 

e %
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Scenario choices can affect difficulty of control

• Much of scenario research is search for system 
operating point with better plasma (not control) 
performance
– closer to passively stable
– reduced actuation requirements
– compatibility with device constraints (e.g., current limits, wall 

heating)
• Different types of plasma instability can be introduced 

when pushing performance
– Vertical
– NTM
– RWM
– etc.

27



System Representation – Sampled Data Systems

• Modern control mixes discrete- and continuous-time systems:

• Approach (1) to representation for Control Design:
– Treat entire system as continuous time. Develop continuous controller K(s), 

then convert to discrete controller K(z).  
– Issues:  Close to original physics models, but sampling rate must be fast 

enough to justify treating discrete controller as continuous.
• Approach (2) to representation for Control Design:

– Treat entire system as discrete and develop discrete controller directly.  
(Methods exist to convert mixed continous/discrete to all discrete system.) 

– Issues:  Direct production of discrete controller with given sample rate, but  
difficult to retain physical intuition.

P(s) T(s) C(s)K(z)++

- Power 
Supply

Plasma/
conductors

control 
params

Controller

r(s) p(s)
D/A

continuous time (analog) system

A/D
discrete time (digital) system

NOTE
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System Representation – Discrete Time Systems

• Time now represented by integers t=k dT (each time is sample number)

• State-Space models are difference equations:

• Now we have Z-transform instead of Laplace transform

• Nice properties:

• Transfer functions now defined on "z"-plane:

System
u(k) y(k)

1-sample 
delayU(z)=F(z) Y(z)=z-1F(z)

complex-plane
(               )

stable pole

x

x

unstable pole

u(k)=f(k) y(k)=f(k-1)

x(k +1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

F(z) =Z f (k){ } = f (k)
k=−∞

∞

∑ z−k

29

zX (z) = AX (z)+ BU (z)
Y (z) = CX (z)+ DU (z)

⇒ Y (z) = C(zI − A)−1B + D⎡⎣ ⎤⎦U (z)



•Simple gain multiplier:
- Command signal u(k) = K * e(k)      (error e(k) = r(k) - y(k))
- K can be scalar (SISO) or matrix (MIMO)

•Digital filter (SISO):

•State Space:
- Either SISO or MIMO:

- Output computed from present error & state (computed last time)
- Controller state is updated at each time step

Controllers – Example Digital Implementations

only previous samples

present and previous samples

⇒ U (z)
E(z)

=
b0 + b1z

−1 +…+ bmz
−m

1− a1z
−1 −…− anz

−n

u(k) = a1u(k −1)+…+ anu(k − n)
+ b0e(k)+ b1e(k −1)+…+ bme(k −m)

30

u(k) = Ccxc(k)+ Dce(k)
xc(k +1) = Acxc(k)+ Bce(k)



Next – some examples of types of controllers

•Why different controller types?
- Simple versus difficult to use
- SISO versus MIMO system
- Highly coupled versus mostly diagonal system
- How problem is posed (what you "care about")
- Noise characteristics of system
- Disturbance sources/effects and characteristics
- Level of knowledge of system dynamics (model uncertainty)
- Guaranteed stability including model uncertainty versus 

nominal stability (not accounting for uncertainty)
- Guaranteed performance including uncertainty versus 

nominal performance (not accounting for uncertainty)
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• PID = Proportional, Derivative, Integral feedback 
– Ideal:
– e(t) = error signal, u(t) = command to control actuator  

• Simple and often all that is needed (DO NOT confuse "often" with "always")
• Purpose of each term:

– KP: Tracking ( KPG/(1+KPG) ~ 1 over control bandwidth )
– KI:  Regulation (gain is infinite at jw=0 => steady-state error = 0)
– KD: Damping, phase lead

• Issues:
– KP: can destabilize if too large (implemented as simple gain multiplier)
– KI: integrator windup (implemented as digital filter)
– KD: amplifies noise at high frequencies (implemented as digital filter)

• Advantage:
– Simple, tunable

• Disadvantage
– Difficult to determine gains in highly coupled systems

Controller Types – PID controllers

u(t) = Kpe(t)+ KD !e(t)+ KI e(t)∫ dt
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• LQG= Linear, Quadratic, Gaussian ("optimal control")
– Assume the linear system has Gaussian noise v(t), w(t):

– Minimize objective functional J ...
– ... where Q>0, R>0 (quadratic cost) 
– Typically, states x are variations around a stable equilibrium x0

– Sometimes J has terms for output y or error e = reference - output  
• Main idea: keep signals small "on average" (variation due to noise)
• Optimal controller is given by:

– First equation is the Kalman Filter, which provides an optimal estimate for 
– If state    measured directly, insert in place of    and use 2nd equation only

• Advantage:
– Straightforward to generate controller optimal against "noise", once J is defined

• Disadvantage
– Matrices Q and R typically determined through trial and error

Controller Types – LQG controllers

33

!x(t) = Ax(t)+ Bu(t)+ v(t)
y(t) = Cx(t)+ w(t)

J = x(t)T Qx(t)+ u(t)T Ru(t)⎡⎣ ⎤⎦dt0

∞

∫

!̂x(t) = Ax̂(t)+ Bu(t)+ K( y(t)−Cx̂(t))
u(t) = −Lx̂(t)

x̂
x̂

x
xx



• = method for synthesizing robust controllers ("Hardy space, infinity norm")
• Robust = guaranteed stability/performance with unknown (but bounded) 

uncertainty in plant model
– Infinity ("worst case") norm : 

• Main idea
– Remove D from picture ...
– ... and make transfer function from Dout to Din as small as possible

• Advantage:
– Guarantees robust stability and performance in the deployed feedback system

• Disadvantage:
– More difficult to understand and to use; some tools produce conservative designs

Controller Types – H-infinity ("robust") controllers

commandsK(s)error
++

- G(s)
Nominal PlantController

r(s) p(s)

D(s)

+
+

+

Dout(s)Din(s)

Uncertainty
nominal plant model

uncertainty band

ga
in

ph
as

e

34

Δ
∞
< bound

H ∞



Summary

• Control Terminology and Concepts:
– Linear/Nonlinear systems, Linear-Time-Invariant system, Discrete time 

system, System gain/phase, s-plane, z-plane, poles, zeros, pure delay, 
phase lag, phase lead, SISO, MIMO, feedforward, feedback, open-loop 
instability, control-driven instability, LHP, RHP, frequency response, roll-off, 
gain margin, phase margin, stability margin, disturbance, overshoot, rise 
time, settling time 

• Control Tools and Methods:
– Block Diagrams, Transfer Functions, State Space Models, Laplace Transform, 

Z-Transform, Fourier Transform, Bode plot, derivation of closed-loop transfer 
function, Root Locus, PID controllers, LQG controllers, H-infinity controllers

• Multiple Objectives of Control:
– Stability
– Tracking and Regulation
– Disturbance Rejection
– Noise Rejection
– Robustness
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Further Reading

• Free online documentation (including books):
– Wikibook of automatic control systems, 

http://en.wikibooks.org/wiki/Control_Systems (not how you would want to 
learn control, but useful as a reference)

– Wikibook of signals and systems, 
http://en.wikibooks.org/wiki/Signals_and_Systems

– Matlab documentation at 
https://www.mathworks.com/help/helpdesk.html

– Control System Toolbox, Robust Control Toolbox

• Good entry-level control books:
– Franklin, Powell, Emami-Naeini, Feedback Control of Dynamic Systems

– Friedland, Control System Design: An Introduction to State-Space Methods
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