Introduction to gyrokinetic
variational principles

Part I: How to derive a gyrokinetic
variational principle



What is gyrokinetics?

* A kinetic model of strongly-magnetized
plasma that governs dynamics on time scales
long compared with particle gyroperiods




What is a gyrokinetic variational
principle?

0 / Ldt =0 Variational principle

Gyrokinetic
V- (eoE+ P) = pgy Vlasov-Poisson

system
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Why does anyone care about
gyrokinetic variational principles?

* Variational approximations preserve exact
conservation laws
— Useful property for constructing:
 Full-f collisionless gyrokinetic models

» Of collisionless gyrokinetic models
 Collisional gyrokinetic models

e Variational principles can be used to develop
structure-preserving simulation algorithms
— Please speak with Professor Qin about GAPS



Are gyrokinetic variational principles
too complicated for you to
understand?






In this lecture, | will:

1) Explain how to derive gyrokinetic
variational principles using a toy
model

I1) Show how to derive the drift
kinetic Vlasov-Poisson system
from a well-known drift kinetic
Lagrangian



Gyrokinetic variational principles
are derived in the following
manner



Step #1: identify a (collisionless)
particle-space kinetic system



This is “two-oscillator kinetics” (TOK)
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TOK is analagous to Vlasov-Maxwell

1 ~ magnetic moment
6 ~ gyrophase
© ~ electric field



Step #2: find a scaled variational
principle for particle-space theory



“scaling” means introducing
dimensionless variables

In full-on kinetic theory
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“scaling” means introducing
dimensionless variables

In two-oscillator kinetics

We — W€

g — gJ/e



A correct scaling reflects the extreme
speed of gyromotion
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A correct scaling reflects the extreme
speed of gyromotion
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A correct scaling reflects the extreme
speed of gyromotion

As € tends to zero,
H = = All dynamics freeze
Except for gyromotion.



Scaled TOK can be derived from the
following Lagrangian
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Scaled TOK can be derived from the
following Lagrangian
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Particle phase-space Lagrangian




Scaled TOK can be derived from the
following Lagrangian
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Free field Lagrangian




Varying the action leads to Euler-
Lagrange equations
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Euler-Lagrange equations lead to TOK
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Step #3: eliminate gyrophase from
Lagrangian via gauge transformation

Gauge transformation: (coordinate change)
+(addition of total time derivatives to L)



We can change coordinates and add
total derivatives to L without changing
physics

X




We can change coordinates and add
total derivatives to L without changing
physics

5/Ldt:0<:>5/(L+S)dt:O



Let’s do both and try to eliminate
gyrophase from the Lagrangian!

ILL — ﬁ+€5u(ﬂ797 SO?Sb?Sb?"')
0 = 0+ed0(i,0,p0,0,0,..)

Near-identity transformation of particle
phase-space variables
"\Why near-identity ? Largest terms
in Lagrangian do not depend on 8



Let’s do both and try to eliminate
gyrophase from the Lagrangian!
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Total time derivatives will be added at will
"\Why bother with S? Will be clear
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We want to find
o, 00,5

Such that

L

Does not depend on

0



The original Lagrangian is given by
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After gauge transformation, the
Lagrangian becomes:
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By redefining S, time derivative of
transformation can be killed




By redefining S, time derivative of
transformation can be killed
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By relating S to 6,69, time derivatives
of new coordinates can be killed
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By relating S to 6,69, time derivatives
of new coordinates can be killed
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By relating S to 6,69, time derivatives
of new coordinates can be killed
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S can now be chosen to eliminate the
largest gyrophase dependent terms




S can now be chosen to eliminate the
largest gyrophase dependent terms
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With S chosen, new coordinates
completely specified...
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...and Lo is now gyrophase
independent...




..but sadly L1,L2,... still depend on

gyrophase!
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Q: How can we eliminate the
remaining gyrophase dependence?



A: apply a second coordinate
transformation!



By repeating this procedure,
gyrophase dependence can be pushed
to arbitrarily-high order
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Step #4 (final step): truncate!



We don’t know all of the h’s, so we
must choose finitely many to keep

* Suppose we keep just h; h,
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Magnetic moment and energy are
conserved
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Exercise: what is the conserved energy
it we keep h_,h,,h;,h,,hs,h,, 07



Summary of how to derive gyrokinetic
variational principles

Step #1: identify a (collisionless) particle-space
kinetic system

Step #2: find a scaled variational principle for
particle-space theory

Step #3: eliminate gyrophase from Lagrangian via
gauge transformation

Step #4 (final step): truncate!



Introduction to gyrokinetic
variational principles

Part Il: How to wield a gyrokinetic
variational principle



Here is a “real” full-F drift kinetic
Lagrangian



The dynamical fields are

V'~ Eulerian phase-space fluid velocity
F' ~ Gyrocenter distribution function
P

~ electrostatic field



The gyrocenter Lagrangian is given by

. * r :
Us(2,2,0) = qs AL - dX + —pu¢ — qsp — Ks(E)

S

& = (vaHa:uaC)
Ms ~ M

?J”b




| will show you how to derive the drift
kinetic Vlasov-Poisson system from
this Lagrangian



It will be useful to introduce two
mathematical concepts

1.Phase space and
configuration space
inner products

2.Functional derivatives



There is an inner product on the space
of phase space functions

(g, h)s = /g(Z)h(Z) dQs(z)
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And also on the spaces of vector fields
and functions on configuration space
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In terms of these inner products, the
Lagrangian is
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Functional derivatives are closely
related to first variations
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The first fixed-endpoint variation of
the action is given by
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Key point: the variations of V,F are
constrained!
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¢ ~ arbitrary vector field on phase space

Why? See literature on “Euler-Poincaré variational principles.”



These constrained variations can
simplify 0S using the following
identities
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The variation of S simplifies to




The variation of S simplifies to
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The Euler-Lagrange equations are

therefore
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Let’s see how to recover the usual
Euler-Lagrange equations for

gyrocenters
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The functional derivative of L w.r.t. V is

therefore
5L ols O/
S(2) = F(2) 55(2) = Fo(2) 55 (2, Val2), 9)



Consider varying L w.r.t F
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The functional derivative of L w.r.t. F is
therefore




Now we can calculate each term in the
Euler-Lagrange equations
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Adding these results together gives
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Adding these results together gives
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Would be zero
if F satisfied the
kinetic equation




Adding these results together gives
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What is our conclusion?

* |f F satisfies the kinetic equation and V
satisfies the single-gyrocenter Euler-Lagrange
equations, the field-theoretic Euler-Lagrange
equation is satisfied
— To understand the the “only if” statement, it is

necessary to delve into Euler-Poincare theory



| will leave it as an exercise to calculate
the functional derivative of L w.r.t. ¥



Result: the other Euler-Lagrange
equation gives the gyrokinetic Poisson
equation
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The following system of equations
therefore satisfies 6S=0
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After you can derive these Euler-
Lagrange equations yourself...

* You will be in a good position to:

— Understand how Noether’s theorem leads to GK
conservation laws

— Understand the Hamiltonian (as opposed to
Lagrangian) formulations of gyrokinetics

— Learn the variational formulation of the Vlasov-
Maxwell system
* Professor Qin’s GAPS project used this variational

principle to develop very powerful structure-preserving
integrators for Vlasov-Maxwell



No more school!




No more school!

Goodbye!




