Introduction to gyrokinetic variational principles

Part I: How to derive a gyrokinetic variational principle

J. W. Burby
Courant Institute of Mathematical Sciences

What is gyrokinetics?

 A kinetic model of strongly-magnetized plasma that governs dynamics on time scales long compared with particle gyroperiods

What is a gyrokinetic variational principle?

$$\delta \int L \, dt = 0$$

Variational principle

$$\nabla \cdot (\epsilon_o \boldsymbol{E} + \boldsymbol{P}) = \rho_{\rm gy}$$

Gyrokinetic Vlasov-Poisson system

$$\partial_t F + \dot{\mathbf{X}} \cdot \nabla F + \dot{v}_{\parallel} \partial_{v_{\parallel}} F = 0$$

Why does anyone care about gyrokinetic variational principles?

- Variational approximations preserve exact conservation laws
 - Useful property for constructing:
 - Full-f collisionless gyrokinetic models
 - δf collisionless gyrokinetic models
 - Collisional gyrokinetic models
- Variational principles can be used to develop structure-preserving simulation algorithms
 - Please speak with Professor Qin about GAPS

Are gyrokinetic variational principles too complicated for you to understand?

In this lecture, I will:

- I) Explain how to derive gyrokinetic variational principles using a toy model
- II) Show how to derive the drift kinetic Vlasov-Poisson system from a well-known drift kinetic Lagrangian

Gyrokinetic variational principles are derived in the following manner

Step #1: identify a (collisionless) particle-space kinetic system

This is "two-oscillator kinetics" (TOK)

$$\dot{\mu} = \frac{2g\varphi\mu}{\omega_c} \sin 2\theta$$

$$\dot{\theta} = \omega_c + \frac{2g\varphi}{\omega_c} \cos^2 \theta$$

$$\ddot{\varphi} = -\Omega^2 \varphi - \frac{2g\mu}{\omega_c} \cos^2 \theta$$

TOK is analagous to Vlasov-Maxwell

 $\mu \sim \text{magnetic moment}$

 $\theta \sim \text{gyrophase}$

 $\varphi \sim \text{electric field}$

Step #2: find a scaled variational principle for particle-space theory

"scaling" means introducing dimensionless variables

In full-on kinetic theory

"scaling" means introducing dimensionless variables

In two-oscillator kinetics

$$\begin{array}{ccc} \omega_c & \rightarrow & \omega_c/\epsilon \\ g & \rightarrow & g/\epsilon \end{array}$$

A correct scaling reflects the extreme speed of gyromotion

$$\dot{\mu} = \frac{2g\varphi\mu}{\omega_c}\sin 2\theta$$

$$\dot{\theta} = \frac{\omega_c}{\epsilon} + \frac{2g\varphi}{\omega_c}\cos^2\theta$$

$$\ddot{\varphi} = -\Omega^2\varphi - \frac{2g\mu}{\omega_c}\cos^2\theta$$

A correct scaling reflects the extreme speed of gyromotion

$$\epsilon \longrightarrow 0$$

A correct scaling reflects the extreme speed of gyromotion

$$\dot{\mu} = 0$$

$$\dot{\theta} = \frac{\omega_c}{\epsilon}$$

$$\ddot{\varphi} = 0$$

As ϵ tends to zero,
All dynamics freeze
Except for gyromotion.

Scaled TOK can be derived from the following Lagrangian

$$L = \mu \dot{\theta} - \left(\mu \frac{\omega_c}{\epsilon} + \frac{2g\varphi\mu}{\omega_c} \cos^2 \theta\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2 \varphi^2$$

Scaled TOK can be derived from the following Lagrangian

$$L = \mu \dot{\theta} - \left(\mu \frac{\omega_c}{\epsilon} + \frac{2g\varphi\mu}{\omega_c} \cos^2 \theta\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2 \varphi^2$$

Particle phase-space Lagrangian

Scaled TOK can be derived from the following Lagrangian

$$L = \mu \dot{\theta} - \left(\mu \frac{\omega_c}{\epsilon} + \frac{2g\varphi\mu}{\omega_c} \cos^2 \theta\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2 \varphi^2$$

Free field Lagrangian

Varying the action leads to Euler-Lagrange equations

$$\delta \int L \, dt = 0 \implies \frac{\frac{d}{dt} \frac{\partial L}{\partial \dot{\mu}} - \frac{\partial L}{\partial \mu}}{\frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} - \frac{\partial L}{\partial \theta}} = 0$$

$$\frac{\frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} - \frac{\partial L}{\partial \theta}}{\frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} - \frac{\partial L}{\partial \varphi}} = 0$$

Euler-Lagrange equations lead to TOK

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\mu}} - \frac{\partial L}{\partial \mu} = 0 \qquad \dot{\mu} = \frac{2g\varphi\mu}{\omega_c}\sin 2\theta$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0 \implies \dot{\theta} = \frac{\omega_c}{\epsilon} + \frac{2g\varphi}{\omega_c}\cos^2\theta$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = 0 \qquad \ddot{\varphi} = -\Omega^2\varphi - \frac{2g\mu}{\omega_c}\cos^2\theta$$

Step #3: eliminate gyrophase from Lagrangian via gauge transformation

Gauge transformation: (coordinate change)
+(addition of total time derivatives to L)

We can change coordinates and add total derivatives to L without changing physics

We can change coordinates and add total derivatives to L without changing physics

$$\delta \int L \, dt = 0 \Leftrightarrow \delta \int (L + \dot{S}) \, dt = 0$$

Let's do both and try to eliminate gyrophase from the Lagrangian!

$$\mu = \bar{\mu} + \epsilon \, \delta \mu(\bar{\mu}, \bar{\theta}, \varphi, \dot{\varphi}, \ddot{\varphi}, ...)$$

$$\theta = \bar{\theta} + \epsilon \, \delta \theta(\bar{\mu}, \bar{\theta}, \varphi, \dot{\varphi}, \ddot{\varphi}, ...)$$

Near-identity transformation of particle phase-space variables

•Why near-identity? Largest terms in Lagrangian do not depend on θ

Let's do both and try to eliminate gyrophase from the Lagrangian!

$$\bar{L} = L + \epsilon \frac{d}{dt} S(\bar{\mu}, \bar{\theta}, \varphi, \dot{\varphi}, \ddot{\varphi}, ...)$$

Total time derivatives will be added at will Why bother with S? Will be clear soon.

We want to find

 $\delta\mu, \delta\theta, S$

Such that

 $ar{L}$

Does not depend on

$$ar{ heta}$$

The original Lagrangian is given by

$$L = \mu \dot{\theta} - \left(\mu \frac{\omega_c}{\epsilon} + \frac{2g\varphi\mu}{\omega_c} \cos^2 \theta\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2 \varphi^2$$

After gauge transformation, the Lagrangian becomes:

$$\bar{L} = \bar{\mu}\dot{\bar{\theta}} - \left(\bar{\mu}\frac{\omega_c}{\epsilon} + \frac{2g\varphi\bar{\mu}}{\omega_c}\cos^2\bar{\theta}\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2\varphi^2$$

$$- \left(\delta\mu\omega_c + \epsilon\frac{2g\varphi\delta\mu}{\omega_c}\cos^2\bar{\theta} - \epsilon\frac{2g\varphi\bar{\mu}}{\omega_c}\sin2\bar{\theta}\,\delta\theta\right)$$

$$+ \epsilon\left(\bar{\mu}\frac{d}{dt}\delta\theta + \delta\mu\,\dot{\bar{\theta}}\right) + \epsilon\frac{dS}{dt} + O(\epsilon^2)$$

By redefining S, time derivative of transformation can be killed

$$S \to S - \frac{d}{dt}(\bar{\mu}\,\delta\theta)$$

By redefining S, time derivative of transformation can be killed

$$\bar{L} = \bar{\mu} \dot{\bar{\theta}} - \left(\bar{\mu} \frac{\omega_c}{\epsilon} + \frac{2g\varphi\bar{\mu}}{\omega_c} \cos^2 \bar{\theta} \right) + \frac{1}{2} \dot{\varphi}^2 - \frac{1}{2} \Omega^2 \varphi^2$$

$$- \left(\delta \mu \omega_c + \epsilon \frac{2g\varphi \delta \mu}{\omega_c} \cos^2 \bar{\theta} - \epsilon \frac{2g\varphi\bar{\mu}}{\omega_c} \sin 2\bar{\theta} \delta \theta \right)$$

$$+ \left(\epsilon \left(\delta \mu \dot{\bar{\theta}} - \delta \theta \dot{\bar{\mu}} \right) + \epsilon \frac{dS}{dt} + O(\epsilon^2) \right)$$

By relating S to $\delta\mu$, $\delta\theta$, time derivatives of new coordinates can be killed

$$\delta \mu = -\frac{\partial S}{\partial \bar{\theta}}$$

$$\delta \theta = \frac{\partial S}{\partial \bar{u}}$$

By relating S to $\delta\mu$, $\delta\theta$, time derivatives of new coordinates can be killed

$$\bar{L} = \bar{\mu}\dot{\bar{\theta}} - \left(\bar{\mu}\frac{\omega_c}{\epsilon} + \frac{2g\varphi\bar{\mu}}{\omega_c}\cos^2\bar{\theta}\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2\varphi^2$$

$$- \left(\delta\mu\omega_c + \epsilon\frac{2g\varphi\delta\mu}{\omega_c}\cos^2\bar{\theta} - \epsilon\frac{2g\varphi\bar{\mu}}{\omega_c}\sin2\bar{\theta}\,\delta\theta\right)$$

$$+ \epsilon\left(\delta\mu\dot{\bar{\theta}} - \delta\theta\dot{\bar{\mu}}\right) + \epsilon\frac{dS}{dt} + O(\epsilon^2)$$

By relating S to $\delta\mu$, $\delta\theta$, time derivatives of new coordinates can be killed

$$\bar{L} = \bar{\mu}\dot{\bar{\theta}} - \left(\bar{\mu}\frac{\omega_c}{\epsilon} + \frac{2g\varphi\bar{\mu}}{\omega_c}\cos^2\bar{\theta}\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2\varphi^2$$

$$- \left(-\omega_c\partial_{\bar{\theta}}S - \epsilon\frac{2g\varphi\partial_{\bar{\theta}}S}{\omega_c}\cos^2\bar{\theta} - \epsilon\frac{2g\varphi\bar{\mu}}{\omega_c}\sin 2\bar{\theta}\partial_{\bar{\mu}}S\right)$$

$$+ \epsilon\partial_t S + O(\epsilon^2)$$

$$\partial_t S = \partial_{\varphi} S \,\dot{\varphi} + \partial_{\dot{\varphi}} S \,\ddot{\varphi} + \partial_{\ddot{\varphi}} S \,\ddot{\varphi} + \dots$$

S can now be chosen to eliminate the largest gyrophase dependent terms

$$\bar{L}_{-1} = -\bar{\mu}\,\omega_{c}$$

$$\bar{L}_{0} = \bar{\mu}\,\dot{\bar{\theta}} - \left(\frac{2g\varphi\bar{\mu}}{\omega_{c}}\cos^{2}\bar{\theta} - \omega_{c}\,\partial_{\bar{\theta}}S\right) + \frac{1}{2}\dot{\varphi}^{2} - \frac{1}{2}\Omega^{2}\varphi^{2}$$

$$\bar{L}_{1} = \frac{2g\varphi\partial_{\bar{\theta}}S}{\omega_{c}}\cos^{2}\bar{\theta} + \frac{2g\varphi\bar{\mu}}{\omega_{c}}\sin 2\bar{\theta}\,\partial_{\bar{\mu}}S + \partial_{t}S$$

$$\bar{L}_{2} = \dots$$

S can now be chosen to eliminate the largest gyrophase dependent terms

$$\frac{2g\varphi\bar{\mu}}{\omega_c}\cos^2\bar{\theta} - \omega_c\,\partial_{\bar{\theta}}S = \langle \frac{2g\varphi\bar{\mu}}{\omega_c}\cos^2\bar{\theta}\rangle$$

$$\Rightarrow \qquad \omega_c\,\partial_{\bar{\theta}}S = \frac{g\varphi\bar{\mu}}{\omega_c}\cos 2\bar{\theta}$$

$$\Rightarrow \qquad S = \frac{g\varphi\bar{\mu}}{2\omega_c^2}\sin 2\theta$$

With S chosen, new coordinates completely specified...

$$\delta \mu = -\frac{g\varphi \bar{\mu}}{\omega_c^2} \cos 2\bar{\theta}$$

$$\delta \theta = \frac{g\varphi}{2\omega_c^2} \sin 2\bar{\theta}$$

...and Lo is now gyrophase independent...

$$\bar{L}_0 = \bar{\mu}\,\dot{\bar{\theta}} - \frac{g\varphi\bar{\mu}}{\omega_c} + \frac{1}{2}\dot{\varphi}^2 + \frac{1}{2}\Omega^2\varphi^2$$

...but sadly L1,L2,... still depend on gyrophase!

$$\bar{L}_1 = \frac{g^2 \varphi^2 \bar{\mu}}{\omega_c^3} + \frac{g^2 \varphi^2 \bar{\mu}}{\omega_c^3} \cos 2\bar{\theta} + \frac{g \dot{\varphi} \bar{\mu}}{2\omega_c^2} \sin 2\bar{\theta}$$

Q: How can we eliminate the remaining gyrophase dependence?

A: apply a second coordinate transformation!

By repeating this procedure, gyrophase dependence can be pushed to arbitrarily-high order

$$\bar{L}(\vartheta, M, \varphi, \dot{\vartheta}, \dot{M}, \dot{\varphi}, \ddot{\varphi}, ...) =
M\dot{\vartheta} - (\epsilon^{-1}h_{-1} + h_0 + \epsilon h_1 + ...) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2\varphi^2$$

$$h_{-1} = M\omega_{c}$$

$$h_{0} = M\frac{g\varphi}{\omega_{c}}$$

$$h_{1} = -M\frac{g^{2}\varphi^{2}}{2\omega_{c}^{3}}$$

$$h_{2} = M\frac{g^{3}\varphi^{3}}{2\omega_{c}^{5}}$$

$$h_{3} = -M\left(\frac{5g^{4}\varphi^{4}}{8\omega_{c}^{7}} + \frac{g^{2}\dot{\varphi}^{2}}{8\omega_{c}^{5}}\right)$$

$$h_{4} = -M\left(\frac{7g^{5}\varphi^{5}}{8\omega_{c}^{9}} + \frac{3g^{3}\varphi\dot{\varphi}^{2}}{8\omega_{c}^{7}} - \frac{g^{3}\varphi^{2}\ddot{\varphi}}{8\omega_{c}^{7}}\right)$$

$$h_{5} = M\left(\frac{21g^{6}\varphi^{6}}{16\omega_{11}^{11}} + \frac{43g^{4}\varphi^{2}\dot{\varphi}^{2}}{32\omega_{2}^{9}} - \frac{9g^{4}\varphi^{3}\ddot{\varphi}}{32\omega_{2}^{9}} + \frac{g^{2}\ddot{\varphi}^{2}}{32\omega_{2}^{7}}\right)$$

Step #4 (final step): truncate!

We don't know all of the h's, so we must choose finitely many to keep

Suppose we keep just h₋₁, h₀

$$\bar{L} = M\dot{\vartheta} - \left(\epsilon^{-1}M\omega_c + M\frac{g\varphi}{\omega_c}\right) + \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\Omega^2\varphi^2$$

$$\dot{M} = 0$$

$$\dot{\vartheta} = \epsilon^{-1}\omega_c + \frac{g\varphi}{\omega_c}$$

$$\ddot{\varphi} = -\Omega^2\varphi - \frac{Mg}{\omega_c}$$

Magnetic moment and energy are conserved

$$E = \dot{\vartheta}\partial_{\dot{\vartheta}}\bar{L} + \dot{\varphi}\partial_{\dot{\varphi}}\bar{L} - \bar{L}$$

$$= \frac{1}{2}\dot{\varphi}^2 + \frac{1}{2}\Omega^2\varphi^2 + \epsilon^{-1}M\omega_c + M\frac{g\varphi}{\omega_c}$$

Exercise: what is the conserved energy if we keep h_{-1} , h_0 , h_1 , h_2 , h_3 , h_4 , h_5 ?

Summary of how to derive gyrokinetic variational principles

- Step #1: identify a (collisionless) particle-space kinetic system
- Step #2: find a scaled variational principle for particle-space theory
- Step #3: eliminate gyrophase from Lagrangian via gauge transformation
- Step #4 (final step): truncate!

Introduction to gyrokinetic variational principles

Part II: How to wield a gyrokinetic variational principle

J. W. Burby
Courant Institute of Mathematical Sciences

Here is a "real" full-F drift kinetic Lagrangian

$$L(F, V, \varphi) = \sum_{s} \int \ell_{s}(z, V_{s}(z), \varphi) F_{s}(z) d\Omega_{s}(z)$$
$$+ \frac{1}{2} \epsilon_{o} \int |\nabla \varphi|^{2} d^{3} \mathbf{X}$$

The dynamical fields are

 $V \sim$ Eulerian phase-space fluid velocity

 $F \sim \text{Gyrocenter distribution function}$

 $\varphi \sim \text{electrostatic field}$

The gyrocenter Lagrangian is given by

$$\ell_{s}(z,\dot{z},\varphi) = q_{s}\boldsymbol{A}_{s}^{*} \cdot d\boldsymbol{X} + \frac{m_{s}}{q_{s}}\mu\dot{\zeta} - q_{s}\varphi - K_{s}(\boldsymbol{E})$$

$$z = (\boldsymbol{X}, v_{\parallel}, \mu, \zeta)$$

$$\boldsymbol{A}_{s}^{*} = \boldsymbol{A} + \frac{m_{s}}{q_{s}}v_{\parallel}\hat{b} - \frac{m_{s}}{q_{s}^{2}}\mu\boldsymbol{W}$$

$$K_{s}(\boldsymbol{E}) = \mu B + \frac{1}{2}m_{s}v_{\parallel}^{2} - \frac{1}{2}m_{s}u_{E}^{2}$$

$$\boldsymbol{u}_{E} = \frac{\boldsymbol{E} \times \hat{b}}{B} \qquad \boldsymbol{W} = (\nabla \hat{e}_{1}) \cdot \hat{e}_{2} + \frac{\hat{b} \cdot \nabla \times \hat{b}}{2}\hat{b}$$

I will show you how to derive the drift kinetic Vlasov-Poisson system from this Lagrangian

It will be useful to introduce two mathematical concepts

- 1.Phase space and configuration space inner products
- 2. Functional derivatives

There is an inner product on the space of phase space functions

$$\langle g, h \rangle_s = \int g(z) h(z) d\Omega_s(z)$$

$$d\Omega(z) = \mathcal{J}_s(z) d^3 \mathbf{X} dv_{\parallel} d\mu d\zeta$$

$$\mathcal{J}_s = \frac{B_{\parallel s}^*}{m_s} = \frac{\hat{b} \cdot \nabla \times A_s^*}{m_s}$$

And also on the spaces of vector fields and functions on configuration space

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \int \boldsymbol{u} \cdot \boldsymbol{v} \, d^3 \boldsymbol{X}$$

$$\langle \varphi, \psi \rangle = \int \varphi \, \psi \, d^3 \boldsymbol{X}$$

In terms of these inner products, the Lagrangian is

$$L = \sum_{s} \langle \ell_s, F_s \rangle_s + \frac{1}{2} \epsilon_o \langle \mathbf{E}, \mathbf{E} \rangle$$

Functional derivatives are closely related to first variations

$$\frac{d}{d\epsilon} \bigg|_{0} L(F + \epsilon \delta F, V + \epsilon \delta V, \varphi + \epsilon \delta \varphi)$$

$$\equiv \sum_{s} \left(\left\langle \frac{\delta L}{\delta V_{s}^{i}}, \delta V_{s}^{i} \right\rangle_{s} + \left\langle \frac{\delta L}{\delta F_{s}}, \delta F_{s} \right\rangle_{s} \right) + \left\langle \frac{\delta L}{\delta \varphi}, \delta \varphi \right\rangle_{s}$$

The first fixed-endpoint variation of the action is given by

$$\delta S = \int_{t_1}^{t_2} \left[\sum_{s} \left(\left\langle \frac{\delta L}{\delta V_s^i}, \delta V_s^i \right\rangle_s + \left\langle \frac{\delta L}{\delta F_s}, \delta F_s \right\rangle \right) + \left\langle \frac{\delta L}{\delta \varphi}, \delta \varphi \right\rangle \right] dt$$

Key point: the variations of V,F are constrained!

$$\delta V_s^i = \dot{\xi}_s^i + V_s^j \partial_j \xi_s^i - \xi_s^j \partial_j V_s^i$$

$$\delta F_s = -\mathcal{J}_s^{-1} \partial_i (\mathcal{J}_s \, \xi_s^i \, F_s)$$

 $\xi \sim \text{arbitrary vector field on phase space}$

Why? See literature on "Euler-Poincaré variational principles."

These constrained variations can simplify δS using the following identities

$$\langle g, \partial_i h \rangle_s = -\langle \mathcal{J}_s^{-1} \partial_i (\mathcal{J}_s g), h \rangle$$

$$\langle g, \partial_{i}h \rangle_{s} = \int g \, \partial_{i}h \, \mathcal{J}_{s} \, d^{3}\mathbf{X} \, dv_{\parallel} \, d\mu \, d\zeta$$

$$= -\int \partial_{i}(\mathcal{J}_{s} \, g) \, h \, d^{3}\mathbf{X} \, dv_{\parallel} \, d\mu \, d\zeta$$

$$= -\int \mathcal{J}_{s}^{-1} \partial_{i}(\mathcal{J}_{s} \, g) \, h \, \mathcal{J}_{s} \, d^{3}\mathbf{X} \, dv_{\parallel} \, d\mu \, d\zeta$$

$$= -\langle \mathcal{J}_{s}^{-1} \partial_{i}(\mathcal{J}_{s} \, g), h \rangle_{s}$$

The variation of S simplifies to

$$\delta S = \int_{t_1}^{t_2} \left[\sum_{s} \left\langle E_i L_s, \xi_s^i \right\rangle_s + \left\langle \frac{\delta L}{\delta \varphi}, \delta \varphi \right\rangle \right]$$

The variation of S simplifies to

$$E_{i}L_{s} = -\frac{d}{dt} \frac{\delta L}{\delta V_{s}^{i}} - \frac{\delta L}{\delta V_{s}^{j}} \partial_{i}V_{s}^{j}$$
$$-\mathcal{J}_{s}^{-1} \partial_{j} \left(\mathcal{J}_{s}V_{s}^{j} \frac{\delta L}{\delta V_{s}^{i}} \right)$$
$$+F_{s} \partial_{i} \frac{\delta L}{\delta F_{s}}$$

The Euler-Lagrange equations are therefore

$$\frac{d}{dt}\frac{\delta L}{\delta V_s^i} + \partial_i V_s^j \frac{\delta L}{\delta V_s^j} + \mathcal{J}_s^{-1} \partial_j \left(\mathcal{J}_s V_s^j \frac{\delta L}{\delta V_s^i} \right) = F_s \partial_i \frac{\delta L}{\delta F_s}$$

$$\frac{\delta L}{\delta \varphi} = 0$$

Let's see how to recover the usual Euler-Lagrange equations for gyrocenters

$$\frac{d}{dt} \frac{\delta L}{\delta V_s^i} + \partial_i V_s^j \frac{\delta L}{\delta V_s^j} + \mathcal{J}_s^{-1} \partial_j \left(\mathcal{J}_s V_s^j \frac{\delta L}{\delta V_s^i} \right) = F_s \partial_i \frac{\delta L}{\delta F_s}$$

$$\Rightarrow \frac{d}{dt} \frac{\partial \ell_s}{\partial \dot{z}^i} - \frac{\partial \ell_s}{\partial z^i} = 0 ?$$

Consider varying L w.r.t V

$$\frac{d}{d\epsilon} \Big|_{0} L(F, V + \epsilon \, \delta V, \varphi) = \sum_{s} \int \frac{d}{d\epsilon} \Big|_{0} \ell_{s}(z, [V_{s} + \epsilon \, \delta V_{s}](z), \varphi) \, F_{s}(z) \, d\Omega_{s}(z)
= \sum_{s} \int \frac{\partial \ell_{s}}{\partial \dot{z}^{i}}(z, V_{s}(z), \varphi) \, \delta V_{s}^{i}(z) \, F_{s}(z) \, d\Omega_{s}(z)
= \sum_{s} \left\langle F_{s} \frac{\delta \tilde{\ell}_{s}}{\delta \dot{z}}, \delta V_{s}^{i} \right\rangle$$

The functional derivative of L w.r.t. V is therefore

$$\Rightarrow \frac{\delta L}{\delta V_s^i}(z) = F_s(z) \frac{\delta \ell_s}{\delta \dot{z}^i}(z) \equiv F_s(z) \frac{\partial \ell_s}{\partial \dot{z}^i}(z, V_s(z), \varphi)$$

Consider varying L w.r.t F

$$\frac{d}{d\epsilon} \Big|_{0} L(F + \epsilon \, \delta F, V, \varphi) = \frac{d}{d\epsilon} \Big|_{0} \sum_{s} \int \ell_{s}(z, V_{s}(z), \varphi) (F_{s} + \epsilon \, \delta F_{s})(z) \, d\Omega_{s}(z)$$

$$= \sum_{s} \int \tilde{\ell}_{s}(z) \delta F_{s}(z) \, d\Omega_{s}(z)$$

$$= \sum_{s} \langle \tilde{\ell}_{s}, \delta F_{s} \rangle_{s}$$

The functional derivative of L w.r.t. F is therefore

$$\Rightarrow \frac{\delta L}{\delta F_s}(z) = \tilde{\ell}_s(z) \equiv \ell_s(z, V_s(z), \varphi)$$

Now we can calculate each term in the Euler-Lagrange equations

$$\frac{d}{dt}\frac{\delta L}{\delta V_s^i} + \partial_i V_s^j \frac{\delta L}{\delta V_s^j} + \mathcal{J}_s^{-1} \partial_j \left(\mathcal{J}_s V_s^j \frac{\delta L}{\delta V_s^i} \right) = F_s \partial_i \frac{\delta L}{\delta F_s}$$

$$\frac{d}{dt} \frac{\delta L}{\delta V_s^i} = \frac{d}{dt} \left(F_s \frac{\partial \ell_s}{\partial \dot{z}^i} \right)
= \partial_t F_s \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} + F_s \frac{d}{dt} \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i}$$

$$\frac{d}{dt}\frac{\delta L}{\delta V_s^i} + \partial_i V_s^j \frac{\delta L}{\delta V_s^j} + \mathcal{J}_s^{-1} \partial_j \left(\mathcal{J}_s V_s^j \frac{\delta L}{\delta V_s^i} \right) = F_s \partial_i \frac{\delta L}{\delta F_s}$$

$$\frac{\delta L}{\delta V_s^j} \partial_i V_s^j = F_s \frac{\partial \ell_s}{\partial \dot{z}^j} \partial_i V_s^j$$

$$\frac{d}{dt}\frac{\delta L}{\delta V_s^i} + \partial_i V_s^j \frac{\delta L}{\delta V_s^j} + \mathcal{J}_s^{-1} \partial_j \left(\mathcal{J}_s V_s^j \frac{\delta L}{\delta V_s^i} \right) = F_s \partial_i \frac{\delta L}{\delta F_s}$$

$$\mathcal{J}_{s}^{-1}\partial_{j}\left(\mathcal{J}_{s}V_{s}^{j}\frac{\delta L}{\delta V_{s}^{i}}\right) = \mathcal{J}_{s}^{-1}\partial_{j}\left(\mathcal{J}_{s}V_{s}^{j}F_{s}\frac{\partial\tilde{\ell}_{s}}{\partial\dot{z}^{i}}\right) \\
= \mathcal{J}_{s}^{-1}\partial_{j}\left(\mathcal{J}_{s}V_{s}^{j}F_{s}\right)\frac{\partial\tilde{\ell}_{s}}{\partial\dot{z}^{i}} + F_{s}V_{s}^{j}\partial_{j}\frac{\partial\tilde{\ell}_{s}}{\partial\dot{z}^{i}}$$

$$\frac{d}{dt}\frac{\delta L}{\delta V_s^i} + \partial_i V_s^j \frac{\delta L}{\delta V_s^j} + \mathcal{J}_s^{-1} \partial_j \left(\mathcal{J}_s V_s^j \frac{\delta L}{\delta V_s^i} \right) = F_s \partial_i \frac{\delta L}{\delta F_s}$$

$$F_s \partial_i \frac{\delta L}{\delta F_s} = F_s \partial_i \tilde{\ell}_s$$

$$= F_s \frac{\partial \tilde{\ell}_s}{\partial z^i} + F_s \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^j} \partial_j V_s^i$$

Adding these results together gives

$$\left[\partial_t F_s + \mathcal{J}_s^{-1} \partial_j (\mathcal{J}_s V_s^j F_s)\right] \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} + F_s \left(\frac{d}{dt} + V_s^j \partial_j\right) \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} = F_s \frac{\partial \tilde{\ell}_s}{\partial z^i}$$

Adding these results together gives

$$\left[\partial_t F_s + \mathcal{J}_s^{-1} \partial_j (\mathcal{J}_s V_s^j F_s)\right] \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} + F_s \left(\frac{d}{dt} + V_s^j \partial_j\right) \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} = F_s \frac{\partial \tilde{\ell}_s}{\partial z^i}$$

Would be zero if F satisfied the kinetic equation

Adding these results together gives

$$\left[\partial_t F_s + \mathcal{J}_s^{-1} \partial_j (\mathcal{J}_s V_s^j F_s)\right] \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} + F_s \left(\frac{d}{dt} + V_s^j \partial_j\right) \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} = F_s \frac{\partial \tilde{\ell}_s}{\partial z^i}$$

Equivalent to usual gyrocenter E-L eq.

$$\Rightarrow \frac{d}{dt} \frac{\partial \ell_s}{\partial \dot{z}^i} - \frac{\partial \ell_s}{\partial z^i} = 0$$

What is our conclusion?

- If F satisfies the kinetic equation and V satisfies the single-gyrocenter Euler-Lagrange equations, the field-theoretic Euler-Lagrange equation is satisfied
 - To understand the the "only if" statement, it is necessary to delve into Euler-Poincare theory

I will leave it as an exercise to calculate the functional derivative of L w.r.t. φ

Result: the other Euler-Lagrange equation gives the gyrokinetic Poisson equation

$$\frac{\delta L}{\delta \varphi} = 0$$

$$\bigvee$$

$$\nabla \cdot \left(\epsilon_o \mathbf{E} + \epsilon_o \frac{c^2}{V_A^2} \mathbf{E}_\perp \right) = \rho_{\rm gy}$$

The following system of equations therefore satisfies $\delta S=0$

$$\left(\frac{d}{dt} + V_s^j \partial_j\right) \frac{\partial \tilde{\ell}_s}{\partial \dot{z}^i} = \frac{\partial \tilde{\ell}_s}{\partial z^i}$$

$$\partial_t F_s + \mathcal{J}_s^{-1} \partial_j (\mathcal{J}_s V_s^j F_s) = 0$$

$$\nabla \cdot \left(\epsilon_o \mathbf{E} + \epsilon_o \frac{c^2}{V_A^2} \mathbf{E}_\perp \right) = \rho_{\rm gy}$$

$$E = -\nabla \varphi$$

After you can derive these Euler-Lagrange equations yourself...

- You will be in a good position to:
 - Understand how Noether's theorem leads to GK conservation laws
 - Understand the Hamiltonian (as opposed to Lagrangian) formulations of gyrokinetics
 - Learn the variational formulation of the Vlasov-Maxwell system
 - Professor Qin's GAPS project used this variational principle to develop very powerful structure-preserving integrators for Vlasov-Maxwell

No more school!

No more school!

