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Fusion Motivation

Species of interest:   Alpha particles in burning plasmas
  NBI-produced fast ions

  ICRH-produced fast ions
  Others…

concern:             Alfvén eigenmodes (TAEs) with global
             spatial structure may cause global losses of

fast particles

Important insight: Only resonant particles affected by 
low-amplitude modes



Transport Mechanisms

Neoclassical:   Large excursions of mirror trapped particles
(banana orbits) + collisional mixing

 

Convective: Transport of phase-space holes and clumps 
by modes with frequency chirping
(Matt Lilley lecture tomorrow)

Quasilinear : Phase-space diffusion over a set of 
overlapped resonances

Important Issue: Individual resonances are narrow.  Can
they affect every particle in phase space?
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Near-threshold Nonlinear Regimes

• Why study the nonlinear response near the threshold?
– Typically, macroscopic plasma parameters evolve slowly compared to the

instability growth time scale
– Perturbation technique is adequate near the instability threshold
– Control of plasma burn is necessary to prevent excursions above threshold

conditions

• Single-mode case:
– Identification of the soft and hard nonlinear regimes is crucial to determining

whether an unstable system will remain at marginal stability
– Bifurcations at single-mode saturation can be analyzed
– The formation of long-lived coherent nonlinear structure is possible (Lilley,

tomorrow’s lecture)

• Multi-mode case:
– Multi-mode scenarios with marginal stability (and possibly transport barriers) are

interesting
– Resonance overlap can trigger hard nonlinear regime



Pendulum equation for particles in an electrostatic wave:

Wave-particle resonance condition:

Phase space portrait in the wave frame:

Key Element in Theory
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Interaction of energetic particles with unstable waves

This equation is the basis of the low amplitude nonlinear resonant response 
of nearly all particles confined in a tokamak and allows simple 1-D theory to 
provide the basic structure for describing the 3-D problem  



Particle Orbits and Resonances

Unperturbed particle motion preserves three quantities:

Toroidal angular momentum (Pϕ)
Energy (E)
Magnetic moment (µ)
Poloidal Angular Momentum Pθ(Ε, Pϕ,µ) constructed

Unperturbed motion is periodic in three angles and it is 
 characterized by three frequencies:

Toroidal angle (ϕ) and toroidal transit frequency (ωϕ)
Poloidal angle (θ) and poloidal transit frequency (ωθ)
Gyroangle (ψ) and gyrofrequency (ωψ)

Wave-particle resonance condition:

! " n!# µ;P# ;E( ) " l!$ µ;P# ;E( ) " s!% µ;P# ;E( ) = 0

The quantities n, l, and s are integers with s = 0 for low-frequency modes.



Wave-Particle Lagrangian(ω<<ωci)

• Perturbed guiding center Lagrangian for low frequency waves (ω<<ωci)
µ constant :

• Dynamical variables:
•                      are  the action-angle variables for the particle

unperturbed motion
•        is the mode amplitude
•        is the mode phase
•        for low frequency waves (ω<<ωci) µ constant

• Matrix element

is a given function, determined by the linear mode structure
• Mode energy:
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Resonant Reduced Hamiltonian
• For the resonant particles only one term, the resonant one, of sum needed
• We focus on this term, created from the generating function

F !old ,"old ;P!nw ,P"nw ; t( ) = (n"old + l!old #$t)P"nw +!P!nw

which yields: %F
%"old

= P"old ,  %F
%!old

= P!old ,  %F
%P!nw

= !nw ,  %F
%P"nw

= "nw  ;

Hnw !nw ,"nw ;P!nw ,P"nw , t( ) = Hold !old ,"old ;P!old ,P"old , t( ) + %F
%t

From which we find: P!nw = P!old " lP#old / n = P!nwr ,     P#nw = P#old / n,   #nw = n#old + l!old "$t
H = H0 P!nw + lP"nw ,nP"nw( ) #$P"nw + AVl P!nw ,P"nw( )exp i"n + i%( ) + cc
thus !nw  is ignorable coordinate, implying P!nw  constant of motion

Expand Hamiltonian about resonant coordinates
!P" = P"nw # P"r ,  !P$ = P$nw # P$r ,  with l %H

%P$old
+ n

%H
%P$n

= l&$r + n&"r =&

Producing a Hamiltonian to within a constant (does not effect dynamics)

!H =
!P2

"

2
#$
#!P"

|!P"=0
+2AVl cos "nw +%( );         &b

2 = 2AVl
#$
#!P"

'

()
*

+,

Same pendulum Hamiltonian found for electrostatic wave
Note in terms of trapping frequency all systems have nearly the same equations



Evolution of Distribution and Wave

Unperturbed particle motion is integrable and has canonical
action-angle variables  Ii and  ξi.

Unperturbed motion is periodic in angles  ξ1, ξ2, and ξ3.

Single resonance approximation  for the Hamiltonian

Kinetic equation with collisions included

Equation for the mode amplitude
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Two Physical Systems



Steady state saturation Levels

1.
2.
3.
4. Interpolation can connect 2 and 3

Power of unstable wave lowered by nonlinear resonant response 
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Basic Ingredients
• Creation of an energy inverted distribution of fast particles
Examples: Bump on Tail Instability:
                  Ion Diamagnetic Drift Drive:
                  due to intrinsic flow velocity between different species

     with waves propagating at velocities between the flows
(insert figure)

• Source to obtain steady state distribution
• Relaxation term (eg. annihilation, diffusion, drag)
• Instability drive, γL , due to particle-wave resonance
• Background dissipation rate, γd, determines the critical gradient for the

instability

(Mode frequency)

Critical slope
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Steady Nonlinear State

Wave mixes resonant particles and tends to flatten their
  distribution function

Particle source feeds resonant region and maintains a finite
  slope,             , of the distribution function

Nonlinearly reduced growth rate balances the damping rate

IS THIS SOLUTION STABLE?

Yes, if

No, if
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Mode Pulsation Scenario

1. Unstable wave grows until it flattens the distribution of
resonant particles; the instability saturates when ωb = γL.

2. The excited wave damps at a rate γd  < γL with the distribution
function remaining flat.

3. The source restores the distribution function at a rate νeff,
bringing a new portion of free energy into the resonance
area.

4. The whole cycle repeats.



Quasilinear Diffusion
(See Ghantos poster for more details)
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Wave Equation

Angular Momentum Conservation (with γd=0)
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However resonance function needs to be broadened to account for discreet modes
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Momentum conservation retained; a and b chosen to best match analytic answers





Effect of  Resonance Overlap

The overlapped
resonances
release more
free energy than
the isolated
resonances



What Happens with Many Modes
Benign superposition of isolated saturated modes
when resonances do not overlap

Enhanced energy release and global quasilinear diffusion
when resonances overlap



Intermittent Quasilinear Diffusion

Classical distribution

Marginal distribution

RESONANCES

Metastable distribution

Sub-critical distribution

A weak source (with insufficient power to overlap the
resonances) is unable to maintain steady quasilinear diffusion

Bursts occur near the marginally stable case

f



Summary
1.  For resonant particle dynamics of low amplitude waves nonlinear

theory of all physical systems in nearly identical (bump-on-tail) to
TAE in tokamak

2. Discrete mode saturation levels can be calculated in various regimes
and accurate interpolation methods connect results

3. Quasilinear theory has been altered to treat both separated mode
case and resonance overlap case

4. Scenarios for various non-steady responses established
5. Foundations have been established for quantitative quasi-linear code

treating discrete or overlapped modes
6.  Interesting chirping phenomenon will be discussed in forthcoming

lecture by Lilley



Finis


