

United States Burning Plasma Organization

Toroidal Alfvén Eigenmode Existence and Implications

James W. Van Dam

Institute for Fusion Studies, University of Texas at Austin
U.S. Burning Plasma Organization, USDOE
U.S. ITER Project Office, USDOE

Outline

- INTRODUCTION: Hannes Alfvén
- ALFVÉN WAVES
 - In general
 - In tokamaks
- TOROIDAL ALFVÉN EIGENMODE
 - Existence
 - Extensions
- TAE IMPLICATIONS FOR BURNING PLASMAS
- TAE RESEARCH PROGRAM

INTRODUCTION: Hannes Alfvén

"Father of Plasma Physics"

Hannes Olof Gösta Alfvén

Born 30 May 1908 (Norrköping,
 Sweden); died 2 April 1995

Career at a glance

- Professor of electromagnetic theory at Royal Institute of Technology, Stockholm (194)
- Professor of electrical engineering at University of California, San Diego (1967-1973/1988)
- Nobel Prize (1970) for MHD work and contributions in founding plasma physics

Hannes Alfvén received the Nobel Prize in Physics in 1970 from King Gustavus Adolphus VI of Sweden

Huge influence of Alfvén

Many contributions to plasma physics

- Existence of electromagnetic-hydromagnetic ("Alfvén") waves (1942)
- Concepts of guiding center approximation, first adiabatic invariant, frozen-in flux
- Acceleration of cosmic rays (→ Fermi acceleration)
- Field-aligned electric currents in the aurora (double layer)
- Stability of Earth-circulating energetic particles (→ Van Allen belts)
- Effect of magnetic storms on Earth's magnetic field
- Alfvén critical-velocity ionization mechanism
- Formation of comet tails
- Plasma cosmology (Alfvén-Klein model)
- Books: Cosmical Electrodynamics (1950), On the Origin of the Solar
 System (1954), World-Antiworlds (1966), Cosmic Plasma (1981)

Wide-spread name

- Alfvén wave, Alfvén layer, Alfvén critical point, Alfvén radii, Alfvén distances, Alfvén resonance,
- European Geophysical Union Hannes Alfvén Medal; European Physical Society (Plasma Physics Division) Hannes Alfven Prize

Factoids

- His youthful involvement in a radio club at school later led (he claimed) to his PhD thesis on "Ultra-Short Electromagnetic waves"
- He had difficulty publishing in standard astrophysical journals (due to disputes with Sidney Chapman)
 - Fermi: "Of course" (1948)
- He considered himself an electrical engineer more than a physicist
- He distrusted computers
- The asteroid "1778 Alfvén" was named in his honor
- He was active in international disarmament movements
- The music composer Hugo Alfvén was his uncle

ALFVÉN WAVES

Two general types of Alfvén waves

Shear Alfvén $(k||B_0, \delta B_{\parallel} \approx 0)$

- Propagates along B₀
- Oscillation resembles a plucked violin string (i.e., driven by B₀-line tension)

Compressional Alfvén $(k \perp B_0, \delta B_{\perp} \approx 0)$

- Propagates across B₀
- Compression-rarefaction wave (i.e., driven by magnetic/plasma pressure)
- Higher frequency, since $k_{\perp} >> k_{||}$

Shear Alfvén continuum

• Ideal-MHD eigenmode equation (Hain-Lüst Eqtn) for cylindrical or large-aspect-ratio toroidal geometry:

$$(...) \frac{d\xi_{r}^{4}}{dr^{4}} + \frac{d}{dr} \left\{ \left[\frac{\omega^{2} - k_{\parallel}^{2} v_{A}^{2}}{\omega^{2} - (k_{\perp}^{2} + k_{\parallel}^{2}) v_{A}^{2}} \right] \frac{B^{2}}{r} \frac{d}{dr} (r\xi_{r}) \right\} + \rho \left[(\omega^{2} - k_{\parallel}^{2} v_{A}^{2}) + ... \right] \xi_{r} = 0$$

- Coefficient of $d^2\xi_r/dr^2$ vanishes when $\omega^2 = k_{||}^2 v_A^2$ (shear Alfvén continuum)
 - The mode structure is singular when the frequency satisfies the inequality Min $(k_{||}^2 v_A^2) \le \omega^2 \le Max (k_{||}^2 v_A^2)$
 - Alfvén velocity is a function of radius in an inhomogeneous plasma:

$$v_A(r) = \frac{B_0(r)}{\sqrt{4\pi n_0(r)M_i}}$$

Kinetic Alfvén Wave (KAW)

$$\omega_A(r) = k_{\parallel} v_A(r) \propto \frac{1}{\sqrt{n_0(r)}}$$

- Solution is singular at position (r_1) of local Alfvén resonance where $\omega = \omega_A(r)$
 - Resonant absorption of wave energy ("continuum damping")
- If electron parallel dynamics and ion FLR effects are included, a nonsingular solution can be obtained: "Kinetic Alfvén Wave"
 - However, KAW experiences strong bulk plasma Landau damping, due to its short wavelength
 - Hence, the global-type Alfvén waves (GAE and TAE) are of more interest, since they have $ω ≠ ω_Δ(r)$

Global Alfvén Eigenmode (GAE)

$$E_r(r,\theta,\zeta) = \sum_m E_{r,(m,n)}(r) \exp(im\theta - in\zeta)$$

- GAE is a radially extended, regular, spatially nonresonant discrete Alfvén eigenmode
 - Requires that the current profile be such that the Alfvén continuum have an off-axis minimum (k_{||}≠0, thus nm<0):

$$\frac{d}{dr}\omega_A(r_1) = 0 \qquad \frac{1}{k_{\parallel}}\frac{dk_{\parallel}}{dr} = -\frac{1}{v_A}\frac{dv_A}{dr}$$

- Frequency lies just below the lower edge of the continuum
- Sidebands suffer continuum damping
- Experiments tried to use GAE for "global" tokamak plasma heating (Texas, Lausanne)

TOROIDAL ALFVÉN EIGENMODE

Alfvén waves in toroidal geometry

• In a torus, wave solutions are quantized poloidally & toroidally:

$$\Phi(r,\theta,\zeta,t) = \exp(-i\omega t) \sum_{m} \Phi_{m}(r) \exp(im\theta - in\zeta)$$

Parallel wave number k_{||} determined by B-line twist q(r)= rB_T/RB_p ("safety factor"):

$$k_{\parallel} = \frac{1}{R} \left(\frac{m}{q(r)} - n \right)$$

 "Gaps" occur in Alfvén continuum in toroidal geometry when

$$\omega = k_{\parallel m} v_A(r) = -k_{\parallel m+1} v_A(r)$$

 Discrete eigenmodes exist within gaps due to equilibrium poloidal

dependence: e.g., $B_0 \propto 1 - (r/R) \cos \theta$

Toroidal Alfvén Eigenmode (TAE)

- TAE is a discrete, radially extended, regular (non-resonant) eigenmode
 - Frequency lies in "gap" of width ~r/R <<1 at q=(m+1/2)/n, formed by toroidicity-induced coupling (m±1)

$$\omega_{TAE}^{m,m+1} = \left(\frac{n}{2m+1}\right) \frac{v_A}{R} \neq \omega_A(r)$$

 Analogy to band gap theory in solidstate crystals (Mathieu equation, Bloch functions): "fiber glass wave guide"

Similarly there exist:

- Ellipticity-induced Alfvén eigenmode (EAE): m±2
- Triangularity-induced Alfvén eigenmode (NAE): m±3

Core-localized TAE

- At low shear (near magnetic axis or near internal transport barrier), the TAE moves near the bottom of the gap
 - Theoretical explanation requires retaining higher-order finite aspect ratio effects
- In addition, a second core-localized TAE appears at the top of the gap

FIG. 5. Eigenfunction of the upper core-localized TAE, calculated from the CASTOR code: n=5 with dominant poloidal harmonics m=4 and 5; eigenfrequency $\omega=0.5951v_{\rm A}(0)/R$.

FIG. 6. Upper and lower core-localized TAE eigenfrequencies as calculated from the CASTOR code (thin solid curves) and from integration of the model equations (dashed curves), compared with the CASTOR-calculated upper and lower Alfvén continua (thick solid curves), as functions of the plasma pressure gradient α .

TOROIDAL ALFVÉN EIGENMODE — Theoretical Derivation —

Eigenmode equations

Begin with:

- Charge neutrality $\nabla \cdot \vec{J} = 0$ $\rho_i \frac{d\vec{v}_i}{dt} = \frac{1}{c} (\vec{J} \times \vec{B}) \nabla \cdot \vec{P}$
- Momentum balance
- Maxwell's equations $\nabla \times \vec{B} = (4\pi/c)\vec{J}$, $\nabla \times \vec{E} + (1/c)(d\vec{B}/dt) = 0$
- Pressure equation: either a fluid equation of state (e.g., $Pρ^{-\gamma}$ = const.) or a kinetic equation (Vlasov, gyrokinetic, drift kinetic)

Linearize equations, with choice for field variables:

- Perturbed E-field components (usually E_r , E_θ , $E_{||}$): useful for RF heating and antenna problems
- Plasma displacement ξ (where d ξ /dt = \mathbf{v}): useful for ideal MHD (E_{||}=0)
- Potentials φ, **A** (where $\vec{E} = -\nabla \phi (1/c) \left(\partial \vec{A} / \partial t \right)$, $\vec{B} = \nabla \times \vec{A}$: useful for solving kinetic equations (need to choose a gauge)

Low-mode-number TAE equation

- For TAE: take E_{||} = 0 (MHD-like); assume low beta (so B_{||} ≈ 0)
- Linearized equation:

$$\vec{B}_0 \cdot \nabla \left(\frac{\vec{B}_0 \cdot \vec{J}}{B_0^2} \right) - \frac{i\omega c}{4\pi} \nabla \cdot \left(\frac{\vec{B}_0 \times \vec{v}}{v_A^2} \right) + \left(\vec{B}_{\perp} \cdot \nabla \right) \left(\frac{\vec{B}_0 \cdot \vec{J}_0}{B_0^2} \right) + c\nabla \cdot \left| \frac{\vec{B}_0 \times \left(\nabla \cdot \vec{P} \right)}{B_0^2} \right| = 0$$

Terms

- 1st term (line bending): For low β , only A_{\parallel} , so $\left(\frac{4\pi}{c}\right)\vec{B}_0 \cdot \vec{J} \cong -\nabla \cdot \left[B_0^2 \nabla_{\perp} \left(\frac{A_{\parallel}}{B_0}\right)\right]$
- 2nd term (inertial): For $\omega \ll \Omega_{ci}$, ion velocity $\vec{v} = c(\vec{E} \times \vec{B}_0)/B_0^2$
- 3rd term (kink): For low beta, $\vec{B}_{\perp} \cong -\vec{B}_0 \times \nabla(A_{\parallel}/B_0)$
- 4th term (kinetic): Use $\vec{v}_d = \frac{v_{\parallel}}{\Omega_c} (\nabla \times \hat{b}v_{\parallel})$ and $\begin{cases} P_{\perp} \\ P_{\parallel} \end{cases} = M \int d^3v \begin{cases} v_{\perp}^2/2 \\ v_{\parallel}^2 \end{cases} f(\vec{r}, \vec{v})$ to obtain (for low beta):

$$c\nabla \cdot \left[\frac{\vec{B}_0 \times \left(\nabla \cdot \vec{P} \right)}{B_0^2} \right] \cong \sum_s e_s \int d^3 v \ \vec{v}_{d,s} \cdot \nabla f_s$$

Flux-type coordinates (1)

Various coordinate systems:

- Cylindrical (R, ϕ , z) on center line
- Shafranov coordinates on shifted flux surface (r_s, θ_s, ζ_s)
- Flux-type (r_f, θ_f, ζ_f) for which field lines are "straight" (i.e., safety factor q is only a function of flux, not of θ):

$$B_0 \cdot \nabla \Phi = \left(B_0 \cdot \nabla \theta \right) \left[\frac{\partial}{\partial \theta} + \left(\frac{B_0 \cdot \nabla \xi}{B_0 \cdot \nabla \theta} \right) \frac{\partial}{\partial \xi} \right]$$

Construct flux coordinates:

- Take $r_f = r_s$ and $\zeta_f = \zeta_s$. Solve for θ_f using

$$\frac{\partial}{\partial \theta} \left(\frac{B_0 \cdot \nabla \zeta}{B_0 \cdot \nabla \theta} \right) = \frac{\partial q}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{J_f}{R_0^2} \right) = 0$$

Assume axisymmetric, large aspect ratio, low beta toroidal plasma with shifted circular magnetic surfaces

$$J_{s} = rR_{0} \left[1 + \left(\frac{r - \Delta'}{R_{0}} \right) \cos \theta_{s} \right]$$

Flux-type coordinates (2)

Shafranov coordinates:

$$R = R_0 - \Delta(r_s) + r_s \cos\theta_s$$
$$\varphi = -\zeta_s$$
$$Z = r_s \sin\theta_s$$

Flux-type coordinates:

$$R = R_0 - \Delta(r_f) + r_f \cos\theta_f + r_f \eta(r_f) \left(\cos 2\theta_f - 1\right)$$

$$\varphi = -\xi_f$$

$$Z = r_f \sin\theta_f + r_f \eta(r_f) \sin 2\theta_f$$

- Here:
$$\eta(r) = \frac{1}{2} \left(\frac{r}{R_0} + \Delta' \right)$$
 with $\Delta' = \frac{d}{dr} \Delta \cong \frac{r}{R_0} \left(\beta_p + \frac{1}{2} l_i \right)$

Large-aspect-ratio limit (r/R₀ << 1)

Expand equations, keeping terms up to O(r/R₀)

- Equilibrium magnetic field strength $\sim B_0 [1 (r/R_0) \cos \theta]$
- Define "parallel wave number" $k_{\parallel,m}(r) = [m/q(r) n]/R_0$
- Fourier decompose as $\Phi(r,\theta,\zeta) = \sum_{m} r E_{m}(r) \exp[i(m\theta m\zeta)]$

Low-n TAE equation:

$$\frac{d}{dr}\left[r^{3}\left(\frac{\omega^{2}}{v_{A}^{2}}-k_{\parallel m}^{2}\right)\frac{dE_{m}}{dr}\right]+r^{2}E_{m}\frac{d}{dr}\left(\frac{\omega^{2}}{v_{A}^{2}}\right)-\left(m^{2}-1\right)\left(\frac{\omega^{2}}{v_{A}^{2}}-k_{\parallel m}^{2}\right)rE_{m} + \frac{d}{dr}\left[r^{3}\hat{\varepsilon}(r)\frac{\omega^{2}}{v_{A}^{2}}\left(\frac{dE_{m-1}}{dr}+\frac{dE_{m+1}}{dr}\right)\right]=-iL(\omega)E_{m}$$

- L(w) represents kinetic (resonant) part of pressure response
- $-\hat{\varepsilon}(r) \approx \frac{5}{2} \left(\frac{r}{R_0}\right)$ represents toroidicity, which couples E_m modes

High-mode-number limit

- Consider modes with $k_{\perp} >> k_{\parallel}$
 - Hence, can ignore fast compressional Alfvén waves: $\nabla_{\perp} \left(4\pi p + \vec{B}_0 \cdot \vec{B} \right) \approx 0$
- Use high-n ballooning mode representation

$$\Phi(\psi,\theta,\xi) = \sum_{l=-\infty}^{+\infty} \hat{\Phi}(\psi,\theta-2\pi l,\xi) \qquad \hat{\Phi} = \phi(\psi,\theta,\xi) \exp[in\chi(q\theta-\xi,\psi)]$$

- Variable χ represents rapid cross-field variation $\,(B_0\cdot\nabla\chi=0)\,$, and function φ the slow variation along field line on equilibrium scale
- − In the ballooning representation, θ is an "extended poloidal angle" with extent -∞ < θ < +∞
- Express χ as $\chi=q\theta-\zeta+\int dq\,\theta_k(\psi)$ where θ_k is determined by a higher-order, radially nonlocal analysis
- $-\Phi$ is periodic (even though $\hat{\Phi}$ is not)

High-n TAE equation

Canonical TAE equation in ballooning representation

$$\frac{d^2}{d\theta^2}\psi + \left[\Omega^2(1+2\varepsilon\cos\theta) - \frac{s^2}{(1+s^2\theta^2)^2}\right]\psi = 0$$

- − Toroidicity parameter $\varepsilon \approx r/R0 << 1$
- Magnetic field shear s = (r/q)(dq/dr)
- Normalized frequency $\Omega = \omega/\omega_A$, with Alfven frequency $\omega_A = v_A/qR_0$
- Wave function: $\psi(\theta) = \frac{\Phi(\theta)}{\sqrt{1 + s^2 \theta^2}}$
- Solution is a mixture of secular and oscillatory behavior
 - Require $\psi(\theta) \to 0$, $\theta \to \pm \infty$

Existence of TAE frequency gap

- Examine asymptotic solution (s $\theta >> 1$)
 - TAE equation has the form of the Mathieu equation

$$\left[\frac{d^2}{dz^2} + a - 2q\cos(2z)\right]\psi(z) = 0$$

- Therefore we know the solution has the Floquet form $\psi(z) = e^{\mu z} P(z)$, where P is periodic with period π and the quantity μ is evaluated from Hill's determinant as
- Hill's determinant as $\cosh(\mu\pi) = 1 2\Delta(0) \left[\sin\left(\frac{\pi\sqrt{a}}{2}\right) \right]^2$ $\text{ The quantity } \Delta(0) \cong 1 + \frac{\pi q^2}{(1-a)\sqrt{a}} \cot\left(\frac{\pi\sqrt{a}}{2}\right), \quad q << 1$
- Focus near $\Omega = \frac{1}{2}$, where $\sin(2\pi\Omega)$ flips sign
 - Find $|\cosh(\mu\pi)|$ < 1 (unbounded solution) when $|\Omega$ -1/2|< (r/R₀)+Δ', where Δ is Shafranov shift: gap of forbidden frequencies
 - Analogous to wave propagation in crystalline lattice (Brillouin bands)

"Forbidden" frequency zone

Matheiu equation unstable zones

TAE frequency gap

Existence of discrete eigenmode

 It can be shown that within TAE gap, there is a discrete frequency at which the solution is well behaved

$$\psi(z) \xrightarrow{z \to 1} \left[A_{+}(\omega) e^{+\operatorname{Re}(\mu)z} + A_{-}(\omega) e^{-\operatorname{Re}(\mu)z} \right] e^{i\operatorname{Im}(\mu)z} P(z)$$

- At some frequency $\omega = \omega_{TAE}$, the coefficient $A_+ = 0$
- To demonstrate this, we need to solve for A₊
 - Requires matching the z >> 1 solution to the z << 1 solution, since A_+ is a "slow" function of $z = \theta/2$

Two-space-scale approach

- Write $\psi(\theta) = \psi_c(\theta) \cos\left(\frac{\theta}{2}\right) + \psi_s(\theta) \sin\left(\frac{\theta}{2}\right)$
- Decompose TAE equation, retaining only $\theta/2$ variation

$$\left| \frac{d^2}{d\theta^2} + \left(\Omega^2 - \frac{1}{4} \right) + \varepsilon \Omega^2 - \frac{s^2}{\left(1 + s^2 \theta^2 \right)^2} \right| \psi_c = -\frac{d\psi_s}{d\theta}$$

$$\left[\frac{d^2}{d\theta^2} + \left(\Omega^2 - \frac{1}{4}\right) - \varepsilon\Omega^2 - \frac{s^2}{\left(1 + s^2\theta^2\right)^2}\right]\psi_s = \frac{d\psi_c}{d\theta}$$

• In the $x = s\theta >> 1$ regime, the well-behaved solution is

$$\psi_c = A \exp \left[-\frac{x}{s} \sqrt{\left(\varepsilon \Omega^2\right)^2 - \left(\Omega^2 - \frac{1}{4}\right)} \right]$$

- Frequencies for which $(\Omega^2-1/4)^2-(\epsilon\Omega^2)^2<0$ are in the TAE gap, whose boundaries are $\Omega^2=\frac{1}{2}\pm\epsilon\Omega^2\sim\frac{1}{2}$ (1±ε)

TAE dispersion relation

- The large x solution (x = $s\theta >> 1$) can be asymptotically matched to the small x solution (x ~ 1)
 - Analytically obtainable in either low shear ($\Omega/s >> 1$) or high shear ($\Omega/s << 1$) limit
 - Results in dispersion relation for the TAE
- Example: low shear (s << 1)

$$\Omega_{TAE}^{2} \cong \frac{1}{4} \left\{ 1 - \varepsilon \left[\frac{\left(1 - \frac{\pi^{2} s^{2}}{32} \right) - \frac{\pi^{2} s^{2}}{16}}{\left(1 - \frac{\pi^{2} s^{2}}{32} \right) + \frac{\pi^{2} s^{2}}{16}} \right] \right\} \approx \frac{1}{4} \left[1 - \varepsilon \left(1 - \frac{\pi^{2} s^{2}}{8} \right) \right]$$

- If repeat the derivation with kinetic resonance term included, Ω_{TAF} becomes complex, giving the growth rate
 - Further calculations yield TAE continuum damping

TAE instability

• Theoretical growth rate:

$$\frac{\gamma}{\omega} \cong \frac{9}{4} \left[\beta_{\alpha} \left(\frac{\omega_{*_{\alpha}}}{\omega_{0}} - \frac{1}{2} \right) F - \beta_{e} \left(\frac{v_{A}}{v_{e}} \right) \right]$$

• Instability requires:

- Wave-particle kinetic resonance $(v_a \ge v_A)$
- Inverse damping $(\omega_{*\alpha} > \omega_0)$
- Growth overcomes damping $(\beta_{\alpha}/\beta_{e} > \text{"small number" --}$ for electron Landau damping; other damping mechanisms also important)

K. L. Wong et al., Phys. Rev. Lett. 66, 1874 (1991)W. W. Heidbrink et al., Nucl. Fusion 31, 1635 (1991)

TAE experimental observation

- Energetic beam ions were ejected: rays dropped 7% in periodic bursts
- A later experiment found intense fast ion fluxes that damaged vacuum vessel (ripple trapping caused by TAE resonance)

- Frequency scaled linearly with B
- Fluctuation amplitude increased with beam power

Observation of α -driven TAE

DT discharge in TFTR

- Reduced TAE damping by observing after turn off of beam heating
- Looked for low-shear core localized TAE, guided by theory

R. Nazikian, G. Y. Fu, et al., Phys. Rev. Lett. **78**, 2976 (1997)

FIG. 1. Evolution of (a) neutral beam power, (b) central β_{α} (0), (c) central safety factor, (d) magnetic shear at $r/a \approx 0.3$, (e) external magnetic fluctuation amplitude, and (f) measured mode frequency for high and low q(0) plasmas [indicated by black (gray) lines] corresponding to the following plasma parameters at the time of peak mode amplitude: R = 260 cm (252 cm), $I_p = 1.6 \text{ MA}$ (2.0 MA), $B_T = 5.3(5.1) \text{ T}$, $n_c(0) = 3.3(4.0) \times 10^{13} \text{ cm}^{-3}$, $T_i(0) = 11(15) \text{ keV}$, $T_e(0) = 5.4(6.0) \text{ keV}$.

Zoology of *AE modes

 Fast particles can destabilize a large variety of Alfvén modes (*AE)

e.g., Toroidal Alfvén Eigenmode (TAE)

Mode identification is robust:

Frequency, mode structure, polarization

Threshold is determined by balance of:

- Growth rate (reliably calculate)
- Damping rate (calculation is very sensitive to parameters, profiles, length scales—but can measure with active/ passive antennas)

Also, Energetic Particle Modes (EPM)

 Exist only in presence of energetic particles (e.g., NBI or RF ions, alphas)

TAE IMPLICATIONS FOR BURNING PLASMAS

What is a "burning plasma"?

Sun

 "Burning" plasma = ions undergo thermonuclear fusion reactions, which supply selfheating to the plasma

The energy output E_{out} is huge (global implications):

$$E_{out} = 450 \times E_{in}$$

The required energy input E_{in} is also large:

D-T fusion

- The "easiest" fusion reaction uses hydrogen isotopes: deuterium (D) and tritium (T)
 - D is plentiful in sea water
 - T can be generated from lithium
 - He is harmless (even useful)

Energy/Fusion: $\varepsilon_f = 17.6 \text{ MeV}$

Nuclear cross sections

Fusion gain Q

$$\frac{dW}{dt} \rightarrow 0 \implies P_{\alpha} + P_{heat} = \frac{W}{\tau_E}$$

Define fusion energy gain,
$$Q = \frac{P_{fusion}}{P_{heat}} = \frac{5 P_{cc}}{P_{heat}}$$

Define
$$\alpha$$
-heating fraction, $f_{\alpha} = \frac{P_{\alpha}}{P_{\alpha} + P_{heat}} = \frac{Q}{Q+5}$

Breakeven	Q = 1	f _α = 17%
Burning plasma regime	Q = 5 Q = 10 (ITER) Q = 20 Q = ∞	$f_{\alpha} = 50\%$ $f_{\alpha} = 60\%$ $f_{\alpha} = 80\%$ $f_{\alpha} = 100\%$

Burning plasmas: the next frontier

Status of magnetic fusion

- Achieved T_i required for fusion, but need ~10 x n τ_F
- Achieved n $\tau_E \approx \frac{1}{2}$ required for fusion, but need ~10 x T_i

Understanding burning plasmas is today's fusion research challenge

- Necessary step forward on the path to fusion energy
- World fusion program is technically and scientifically ready to proceed with a burning plasma experiment (→ITER)

Science challenges for burning plasmas

- Many of the scientific challenges for burning plasmas are the <u>same</u> as those of today's experiments, albeit extended to new parameter ranges
 - Plasma equilibrium
 - Macroscopic stability
 - Transport and confinement
 - Supra-thermal particles and plasma-wave interactions
 - Measurement and control tools
- Burning plasmas also have <u>new</u> challenges
 - Dynamics of exothermic medium
 - Self-heated and increasingly self-organized
 - Large plasma size
 - Large population of highly energetic alpha particles
 - Thermonuclear environment

New science issues for burning plasmas

Uniquely BP issues

- Alpha particles
 - Large population of suprathermal ions
- Self-heating
 - "Autonomous" system (selforganized profiles)
 - Thermal stability

Reactor-scale BP issues

- Scaling with size & B field
- High performance
 - Operational limits, heat flux on plasma-facing components
- Nuclear environment
 - Radiation, tritium retention, dust, tritium breeding

All issues are strongly coupled/integrated

Energetic particles

- In addition to thermal ions and electrons, plasmas often contain a suprathermal species = "energetic particles"
 - Highly energetic (T_f >> T_i)
 - Low density $(n_f \ll n_i)$, but comparable pressure $(n_f T_f \cong n_i T_i)$
- Energetic particles can be created from various sources
 - Externally: ion/electron cyclotron RF heating or neutral beam injection —> high-energy "tails" of ions and electrons
 - Internally: fusion reaction alpha particles; runaway electrons
- The plasma physics of energetic particles is of interest to:
 - Laboratory fusion plasmas (alphas provide self-heating to sustain ignition)
 - Can excite various types of Alfvén instabilities (since $v_{\alpha} \sim v_{A}$)
 - Can be redistributed or lost, leading to reduced fusion heating, increased heat loading on walls, etc.
 - Space and astrophysical plasmas (e.g., proton ring in Earth's magnetosphere)
 - High-energy-physics accelerators (collective effects)

Alpha particle characteristics

Plasma ions and electrons:

- T_{i.e} \sim 10-20 keV
- "Frozen-in" behavior to lowest order (MHD description)
- Thermodynamic equilibrium (Maxwellian distribution)

• Alpha particles:

- High energy: $T_{\alpha,birth}^{DT} = 3.5 \text{ MeV}$
- Not "frozen" to B-field lines (require kinetic description)
- Low density $(n_{\alpha} < n_{i,e})$, but comparable pressure $(p_{\alpha} \sim p_{i,e})$
- Non-Maxwellian "slowing down" distribution
- Centrally peaked profile

$$\left| \nabla p_{\alpha} / p_{\alpha} \right|^{-1} \le a/2$$

• Other energetic particles:

- Supra-thermal ions from NBI and ICRH
 - Can simulate α -particle effects without reactivity (although NBI/ICRH ions are anisotropic in pitch angle, whereas alphas are isotropic)
 - Also present in burning plasmas with auxiliary heating
- Run-away electrons associated with disruptions

Birth, life, and death of alpha particles

- DT alphas are born in peaked distribution at 3.5 MeV at rate ∂n_α/∂t = n_Dn_T<σv>
 - During time τ_s , they are slowed down by collisions with electrons to smoother distribution at $^{\sim}$ 1 MeV
 - After time τ_M , they thermalize against both electrons and ions to the plasma temperature ($T_e \sim T_i \sim 10 \text{ keV}$)
 - Alphas are confined for time τ_{α} . In steady-state there are two alpha populations: slowing-down α 's (n_s) and cool Maxwellian α 's (n_M)
- Typically τ_{α} ~ 10 τ_{M} ~ 10³ τ_{s} : hence $\alpha's$ have time to thermalize
 - Since $n_s / n_\alpha \sim \tau_s / \tau_\alpha \sim 10^{-3}$, then $n_M \sim n_\alpha \sim n_e$ (for reactors); hence "ash" (slow α 's) is a problem in reactors, because it will "poison" the plasma

Slowing-down distribution

The classical steady-state "slowing down" distribution (isotropic) is

$$F_{s}(r,v) = \begin{cases} S(r)\tau_{s}/4\pi(v^{3}+v_{c}^{3}), & v < v_{\alpha 0} \\ 0, & v > v_{\alpha 0} \end{cases}$$

Slowing-down time:

$$\tau_s = \frac{3m_e m_\alpha v_e^3}{16\sqrt{\pi} Z_\alpha^2 e^4 n_e \ln \Lambda_e} \cong 0.37 \text{ sec}$$

$$v_c = v_e \left[\frac{3\sqrt{\pi} m_e}{4m_p \ln \Lambda_e} \sum_i \frac{n_i Z_i^2 \ln \Lambda_i}{A_i n_e} \right]^{1/3} \approx 4.6 \times 10^8 cm/s$$

Birth velocity:

$$v_{\alpha 0}^{D-T} = 1.3 \times 10^9 \, cm/s$$

Temperature dependence

Alpha parameters are determined by the plasma temperature

- For ~10 keV plasma, α's deposit their energy into thermal electrons, with slowingdown time τ_s ∝ T_e^{3/2} / n_e
- Since the alpha source $\sim n_e^2 < \sigma v >$, we have $n_\alpha / n_e \sim T_e^{3/2} < \sigma v > \propto T_e^{3/2} T_i^2$
- For an equal-temperature Maxwellian plasma, the ratios n_{α}/n_{e} and $\beta_{\alpha}/\beta_{plasma}$ are unique functions of temperature T_{e} .

PPPL#90X0355

THERMONUCLEAR 50-50 D-T PLASMA $Z_{eff} = 1$ and 2

Significance for ITER

- Approximately 200-600 MW of alpha heating needed to sustain ignition
 - Huge amount of power to handle with no direct external control
- Experimental relevance of alpha loss:
 - Damage to first wall and divertor plate structure (wall loading)
 - Impurity influx
 - Reduced efficiency of current drive or heating
 - Operational control problems (e.g., thermal burn stability)
 - Quenching of ignition (e.g., fuel dilution by α ash)

- Understanding of alpha physics is needed to:
 - Assure good alpha confinement
 - Optimize alpha heating efficiency
 - Avoid alpha-driven collective instabilities (*AE modes)
- Alpha dynamics integrated with overall plasma behavior
 - Macro-stability, transport, heating, edge, ...

Parameter comparison

Fast ion parameters in contemporary experiments compared with projected ITER values.

Tokamak	TFTR	JET	JT-60U	JET	ITER
Fast ion	Alpha	Alpha	Deuterium	Alpha	Alpha
Source	Fusion	Fusion	Co NBI	ICRF tail	Fusion
Reference	[3]	[3]	[34]	[20, 52]	[52]
τ_S (s)	0.5	1.0	0.085	0.4	0.8
$\delta/a^{\rm a}$	0.3	0.36	0.34	0.35	0.05
$P_f(0) (MW m^{-3})$	0.28	0.12	0.12	0.5	0.55
$n_f(0)/n_e(0)$ (%)	0.3	0.44	2	1.5	0.85
$\beta_f(0)$ (%)	0.26	0.7	0.6	3	1.2
$\langle \beta_f \rangle$ (%)	0.03	0.12	0.15	0.3	0.3
$\max R\nabla \beta_f $ (%)	2.0	3.5	6	5	3.8
$v_f(0)/v_A(0)$	1.6	1.6	1.9	1.3	1.9

Differences for fast ("f") ion physics in ITER:

- Orbit size δ /a in ITER is much smaller
- Most of the other parameters (especially dimensionless) are comparable
- No external control of alphas, in contrast to NBI and ICRH fast ions

TAE stability in ITER – 1

- ITER will operate with a large population of super-Alfvénic energetic particles
 - Alfvén Mach number (v_{α}/v_A) and pressure (β_{α}) for ITER alpha particles have similar values as in existing experiments
- ITER's large size (and hence small-wavelength regime $\rho_{*_{fast}}^{-1} = a/\rho_{fast} >> 1$) implies a "sea" of many potentially unstable TAE modes
 - Could cause redistribution or loss of alpha particles ("domino" effect)

TAE stability in ITER – 2

N. Gorelenkov

ITER will have 1 MeV negative-ion neutral beams for current drive & heating

- Theory predicts that these NNBI energetic ions can drive TAE instability, comparable to alpha particles
- With the beam ion drive included, the stability prediction for ITER changes (at 20 keV) from marginality to definite instability
- A model quasi-linear calculation predicts negligible to modest losses

Alfvén instabilities as plasma diagnostic

Internal transport barrier (ITB) triggering event

- "Grand Cascade" (many simultaneous n-modes) occurrence is coincident with ITB formation (when q_{min} passes through integer value)
- Being used on JET as an internal diagnostic to monitor q_{min}
- Can create ITB by application of main heating shortly before a Grand Cascade is known to occur

TAE RESEARCH PROGRAM

ITER will demonstrate the scientific and technological basis for fusion energy

51

Today: 10 MW, 1 sec, gain = 1

- ITER: 500 MW, > 400 sec, gain \ge 10

The world's biggest fusion energy research project ("burning plasma")

- 15 MA plasma current, 5.3 T magnetic field, 6.2 m major radius, 2.0 plasma minor radius, 840 m³ plasma volume, superconducting
- €10B to construct, then operate for 20 years (First Plasma" in 2019, DT in 2027)

An international collaboration

- 7 partners, 50% of world's population
- EU the host Member, sited in France
- Excellent example of US involvement in bigscience international physics collaboration (cf. Large Hadron Collider, ALMA telescope)

USBPO: physics support for ITER

U.S. Burning Plasma Organization is community-based

 Mission: Advance the scientific understanding of burning plasmas and ensure the greatest benefit from burning plasma experiments by coordinating relevant U.S. fusion research with broad community participation

Broad community participation:

- Regular members (316 from 55 institutions)
- Associate members (15 from 9 non-US institutions)

USBPO web site (www.burningplasma.org)

- All presentations, white papers, progress reports are publicly available
- eNews monthly newsletter: 480 subscribers (from 95 institutions)
 - "Director's Corner" column, feature articles, ITPA meeting reports, calendar of fusion events, research highlights, community reports

USBPO role in ITER support

US ITER Project Office (ORNL)

- Main link to ITER
- Provides hardware & technical contributions

USBPO

- Coordinates US burning plasma physics research
- USBPO director is also the US ITER Project Office chief scientist
- Companion to Virtual
 Laboratory for Technology

Jim Van Dam (Director)
Chuck Greenfield (Deputy Director)
Nermin Uckan (Assistant Director for ITER
Liaison)

Council:

Mike Mauel (Chair)
Michael Bell (Vice Chair)

+10 members at large

Executive Committee members in red

Research Committee made up of Topical Group Leadership

MHD, Macroscopic Plasma Physics Ted Strait, François Waelbrock

Integrated Scenarios
John Ferron, Amanda Hubbard

Boundary Tom Rognlien, Tony Leonard **Operations and Control David Gates, Mike Walker**

Fusion Engineering Science Richard Nygren, Larry Baylor

Modeling and Simulation Dylan Brennan, Dave Mikkelsen

Diagnostics Jim Terry, David Brower

Confinement and Transport John Rice, George McKee

Plasma-Wave Interactions Steve Wukitch, Gary Taylor

Energetic Particles Donald Spong, Eric Fredrickson

ITPA

ITPA also has Energetic Particles group

Mar 2010: Plasma-Boundary Interfaces topical group was renamed "Pedestal and Divertor/SOL"

2010 IISS

- 4th ITER International Summer School held in US last year
 - May 31-June 4, University of Texas
 - Sponsors: National Instruments,
 USBPO, French Embassy in US,
- Theme: MHD and Plasma Control in Magnetic Fusion Devices
- Participation
 - 133 participants from 17 countries and 48 institutions

"Fusion is the future, and the future is in your hands."

20 lecturers from 7 countries & ITER

4 computer lab sessions

Burning plasma at APS-DPP Meeting

- Town Meeting on ITER Status (Tues, Nov 9, 2010)
 - Gyung-Su Lee (MAC): New ITER Baseline and Risk Assessment
 - Alberto Loarte (ITER): Scientific Status of ITER
 - Brad Nelson (USIPO): US Engineering and Technology R&D for ITER
 - Jim Van Dam (USBPO): US Scientific Contributions to ITER R&D
 - Discussion session: moderator Mike Mauel (USBPO Council)
- Two contributed ITER oral sessions (@ 11 ten-minute talks)
- Town Meeting talks are posted on USBPO web site
- Likewise, being organized for 2011 APS-DPP Meeting

SUMMARY

- Burning plasma studies on ITER open up new regime of plasma physics of an exothermic medium
 - A "grand challenge" problem, with potential social benefit
- Dramatic scientific progress in last two decades has laid the foundation for burning plasma experiments
 - Coordinated efforts of Experiments, Diagnostics, Theory, and Simulations to create validated predictive models of plasma behavior
 - Alfvén wave instabilities are important topic for burning plasmas
- Construction has begun of long-awaited world's first burning plasma experiment: ITER
 - Many exciting near/longer-term research issues in burning plasma science for ITER operation and next-generation experiments (DEMO)

References: Burning Plasmas

- Final Report—Workshop on Burning Plasma Science: Exploring the Fusion Science Frontier (2000) http://fire.pppl.gov/ufa bp wkshp.html
- Review of Burning Plasma Physics (Fusion Energy Sciences Advisory Committee, 2001) http:// fire.ofes.fusion.doe.gov/More_html/FESAC/Austinfinalfull.pdf
- Burning Plasma: Bringing a Star to Earth (National Academy of Science, 2004)
- R. Hawryluk, Results from Deuterium-Tritium Tokamak Confinement Experiments, Reviews of Modern Physics v. 70, p. 537 (1998)
- Presentations at USBPO Burning Plasma Workshop 2005
 <u>www.burningplasma.org/reference.html</u> (energetic particle physics plenary talk, break-out group presentations, and summary)
- ITER Physics Basis, Chap. 5 (Energetic Particles), Nuclear Fusion (1999); *Progress in the ITER Physics Basis*, Nuclear Fusion (2007)
- R. J. Fonck, Scientific Developments in the Journey to a Burning Plasma, invited talk at 2009
 APS Spring Meeting (http://burningplasma.org/reference.html)

Some classic TAE references

Fast ion excitation of Kinetic Alfvén Wave

 M. N. Rosenbluth and P. H. Rutherford, "Excitation of Alfvén Waves by High-Energy Ions in a Tokamak," Phys. Rev. Lett. 34, 1428 (1975)

Existence of discrete TAE mode

 C. Z. Cheng, L. Chen, and M. S. Chance, "High-n Ideal and Resistive Shear Alfvén Waves in Tokamaks," Ann. Phys. (NY) 161, 21 (1985)

TAE excitation by alpha particles

 G. Y. Fu and J. W. Van Dam, "Excitation of Toroidicity-Induced Shear Alfvén Eigenmode by Fusion Alpha Particles in an Ignited Tokamak," Phys. Fluids B 1, 1949 (1989)

Core-localized TAE

- G. Y. Fu, "Existence of core-localized toroiicity-induced Alfvén eigenmode," Phys. Plasmas 2, 1029 (1995)
- H. L. Berk et al., "More on core-localized toroidal Alfvén eigenmodes," Phys. Plasmas 2, 3401 (1995)

Continuum damping of TAE

 M. N. Rosenbluth et al., "Mode structure and continuum damping of high-n toroidal Alfvén eigenmodes," Phys. Fluids B 4, 2189 (1992)

Exercise #1: TAE frequency and gap

- For the Toroidal Alfvén Eigenmode, calculate the q-value where the gap is located and estimate the typical TAE mode frequency.
 - Repeat this exercise for the Ellipticityand Triangularity-induced Alfvén Eigenmodes

Exercise #2: Nonlinear fishbone cycle

• Consider a simple model for the fishbone cycle [R. White]. Assume the trapped fast ions are deposited at rate S until the threshold beta β_c is reached. Model the losses as a rigid displacement of the trapped particles toward the wall. Equations for the trapped particle beta β and the mode amplitude A are:

$$\frac{d\beta}{dt} = S - A\beta_c , \quad \frac{dA}{dt} = \gamma_0 \left(\frac{\beta}{\beta_c} - 1 \right) A$$

- Show that the solution of these equations will be cyclic. [Hint: Approximately plot β and A as functions of time. Then, from the equations, construct a function F(β , A) that satisfies $\partial F/\partial t = 0$. Approximately plot the contours F = constant in β -A phase space. Show that F is minimum when $\beta = \beta_c$ and A=S/ β_c .]
- If the losses are diffusive, rather than rigid, then $d\beta/dt = S A\beta$. In this case, show that $\partial F/\partial t \le 0$, with $\partial F/\partial t = 0$ only at $\beta = \beta_c$, and that the solution spirals toward this fixed point.