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INTRODUCTION:
Hannes Alfvén
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“Father of Plasma Physics”

e Hannes Olof Gosta Alfvén

— Born 30 May 1908 (Norrkoping,
Sweden); died 2 April 1995

e (Career at a glance

— Professor of electromagnetic theory
at Royal Institute of Technology,
Stockholm (194)

— Professor of electrical engineering
at University of California, San
Diego (1967-1973/1988)

Hannes Alfvén received the
— Nobel Prize (1970) for MHD work Nobel Prize in Physics in

and contributions in founding 1970 from King Gustavus
plasma physics Adolphus VI of Sweden
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1 4 USBPO
Huge influence of Alfvén Ysro?

* Many contributions to plasma physics
— Existence of electromagnetic-hydromagnetic (“Alfvén”) waves (1942)

— Concepts of guiding center approximation, first adiabatic invariant,
frozen-in flux

— Acceleration of cosmic rays (= Fermi acceleration)
— Field-aligned electric currents in the aurora (double layer)
— Stability of Earth-circulating energetic particles (= Van Allen belts)
— Effect of magnetic storms on Earth’s magnetic field
— Alfvén critical-velocity ionization mechanism
— Formation of comet tails
— Plasma cosmology (Alfvén-Klein model)
— Books: Cosmical Electrodynamics (1950), On the Origin of the Solar
System (1954), World-Antiworlds (1966), Cosmic Plasma (1981)
*  Wide-spread name

— Alfvén wave, Alfvén layer, Alfvén critical point, Alfvén radii, Alfvén
distances, Alfvén resonance, ....

— European Geophysical Union Hannes Alfvén Medal; European Physical
Society (Plasma Physics Division) Hannes Alfven Prize
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Factoids

* His youthful involvement in a radio club at school
later led (he claimed) to his PhD thesis on “Ultra-
Short Electromagnetic waves”

* He had difficulty publishing in standard astrophysical
journals (due to disputes with Sidney Chapman)

— Fermi: “Of course” (1948)
* He considered himself an electrical engineer more
than a physicist
* He distrusted computers
* The asteroid “1778 Alfvén” was named in his honor

e He was active in international disarmament
movements

* The music composer Hugo Alfvén was his uncle
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ALFVEN WAVES
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Two general types of Alfvén waves

Shear Alfvén (k|[B,, 0B=0)

BO A BOA

Ik

AJ‘/ >
‘/6J OB,

* Propagates along B,

e Oscillation resembles a plucked violin
string (i.e., driven by B,-line tension)

B,

Compressional Alfvén (k1B 0B,=0)

A
BO

6B|J I oE, k

‘/6EL , 8]

* Propagates across B,
e Compression-rarefaction wave (i.e.,

driven by magnetic/plasma pressure)

e Higher frequency, since k; >> k|,
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Shear Alfvén continuum

e |deal-MHD eigenmode equation (Hain-Liist Eqtn) for
cylindrical or large-aspect-ratio toroidal geometry:
B® d
rodr

2 2 2

0’ - (k> + k),

()45 |

) drl (&) +p[(w2— kllsz2)+...]§ =0

* Coefficient of d’ /dr ? vanishes when w? = k% v, (shear
Alfvén continuum)

— The mode structure is singular when the frequency satisfies the
inequality ~ Min (k;2v,?) £ @* < Max (k;? v,?)

— Alfvén velocity is a function of radius in an inhomogeneous plasma:
By(r)
4 any(r)M,

VA(I’)=
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Kinetic Alfvén Wave (KAW) C5Ero

A e 1
A w,(r)=kyv,(r)c ——

\7o(7)

e Solution is singular at position
(r,) of local Alfvén resonance
where 0 = w,(r)

— Resonant absorption of wave
energy (“continuum damping”)

®

Wave

ry r

e If electron parallel dynamics and ion FLR effects are included, a non-
singular solution can be obtained: “Kinetic Alfvén Wave”

— However, KAW experiences strong bulk plasma Landau damping, due to its short
wavelength

— Hence, the global-type Alfvén waves (GAE and TAE) are of more interest, since
they have m # w,(r)
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£ : USBPO
Global Alfvén Eigenmode (GAE) V&N

- ' ) Y 1 e i

0O 02 04 06 08

E(r.0.0)= Y E, ., (r) exp(imd - inf)

e GAE is a radially extended,
regular, spatially non-
resonant discrete Alfvén
eigenmode

— Requires that the current
profile be such that the Alfvén

continuum have an off-axis
minimum (k#0, thus nm<0):

d 1 dk 1 dv
' EwA(rl)=0 |:> —=———"

;” dr v, dr

— Frequency lies just below the
lower edge of the continuum

— Sidebands suffer continuum
damping
— Experiments tried to use GAE

for “global” tokamak plasma
heating (Texas, Lausanne)
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TOROIDAL ALFVEN EIGENMODE
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= : H USBPO
Alfvén waves in toroidal geometry Ysro?

e In atorus, wave solutions are e “Gaps” occur in Alfvén continuum in
quantized poloidally & toroidally: toroidal geometry when
O(r,0,8,1)= exp(-iwt)E ® (r)exp(im - inl) = ki, Va(r) = |Im+1vA(r )

e Parallel wave number k 1 determined
by B-line twist q(r)= rB,/RB, (“safety

= l(ﬂ_ n)
R\ g(r)

factor”):

r/a

e Discrete eigenmodes exist within gaps
due to equilibrium poloidal

dependence: e.g., B, 1 - (r/R) cos 0
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1 A : USBPO
Toroidal Alfvén Eigenmode (TAE) C258r0.

e TAE is a discrete, radially extended,
regular (non-resonant) eigenmode

=§‘T — Frequency lies in “gap” of width ~r/R
= y <<1 at g=(m+1/2)/n, formed by
+ T opap/an®) toroidicity-induced coupling (m+1)
m,m+1 n vA
Wy = =m,(r)
100 e (2m+1)R A
aof ] — Analogy to band gap theory in solid-
l ma-i 1 state crystals (Mathieu equation, Bloch
30f - functions): “fiber glass wave guide”
20 . . .
e Similarly there exist:
1.0 < — Ellipticity-induced Alfvén eigenmode
(EAE): m+2
05 s o5 o5 0 — Triangularity-induced Alfvén

r/0

eigenmode (NAE): m3
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1 USBPO
Core-localized TAE C5Ero

@ T S me e At low shear (near magnetic axis or near
v \/ “WV T internal transport barrier), the TAE moves
/ near the bottom of the gap

TAE > pooi — Theoretical explanation requires retaining
higher-order finite aspect ratio effects

v e ~ @ o

\

3

T g * In addition, a second core-localized TAE
appears at the top of the gap
5——r—r—7— 17677?&1{ IS BN M L L B B 1.5:
4E-mif n=5 —§ v, @ | m=5 1 1 E'_j:f»::;'
- osf
af ay ‘ g
S b : T — o

2 —: 0.5

L ;

-m=6 3 80 007 004 006 006 04 047 044 046
o 0 05 1 0 V] = 'OI‘ZI ‘ JOI.4I ‘ 31.6. - 101.8l - 1 a

112 '
v Ve - : N
FIG. 6. Upper and lower core-localized TAE eigentrequencies as calculated
. . . from the CASTOR code (thin solid curves) and from integration of the model
FIG. 5. Eigenfunction of the upper core-localized TAE, calculated from the equations (dashed curves), compared with the CASTOR-calculated upper and

CASTOR code: n=5 with dominant poloidal harmonics m=4 and 5; eigen- . . . . .
frequency &=0.5951u ,(0)/R. lower Alfvén continua (thick solid curves), as functions of the plasma pres-
sure gradient a.

ITER International Summer School —June 2011



TOROIDAL ALFVEN EIGENMODE
— Theoretical Derivation —
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Eigenmode equations

* Begin with:

; _ l(fxé)_v-ﬁ
dt C

Charge neutrality V-J=0 Pi
Momentum balance
Maxwell’s equations VxB=(4x/c)J, VxE+(1/c)(dB/dt)=0

Pressure equation: either a fluid equation of state (e.g., Pp™ = const.)
or a kinetic equation (Vlasov, gyrokinetic, drift kinetic)

* Linearize equations, with choice for field variables:

Perturbed E-field components (usually E, Ey, E||): useful for RF heating
and antenna problems

Plasma displacement & (where d&/dt = v): useful for ideal MHD (E,,=0)

Potentials ¢, A (where E-=-v¢-1/c)dA/ar), B=vVxA :useful for
solving kinetic equations (need to choose a gauge)
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Low-mode-number TAE equation

* For TAE: take E,| = 0 (MHD-like); assume low beta (so B, = 0)

* Linearized equation:

B, - B x¥) (= B .7 B x(v-ﬁ)
B,V 2J IV 2 (B ) o eV | == 0
B, 4 v, B, B,
* Terms
' ' NG, G =-v-| BV, [ 2
— 1% term (line bending): For low {3, only A, so (. )™ " 7 0 Vil B,

— 2" term (inertial): For w << Q_, ion velocity v = ¢ Ex BO)/BO2

— 3" term (kink): For low beta, B, = -B,x V(A,/B,)

— 4% term (kinetic): Use v, = g‘;— V x bv”) and {PL}=Mfd3v{vL2/2}f(F,§)
to obtain (for low beta): ¢ B
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Flux-type coordinates (1)

* Various coordinate systems:
— Cylindrical (R, ¢, z) on center line

— Shafranov coordinates on shifted flux
surface (r,, 0, C,)

— Flux-type (r, 0y, ;) for which field
lines are “straight” (i.e., safety factor
g is only a function of flux, not of 0):

B, V® = (B, V0)

Construct flux coordinates:
— Take ry=r and C;= C.. Solve for 0;

T30 90

Ro\ | C[Ao /]

Assume axisymmetric, large aspect
ratio, low beta toroidal plasma with
shifted circular magnetic surfaces

1+ r-A cost,
RO

J, =R,

ITER International Summer School —June 2011
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Flux-type coordinates (2)

 Shafranov coordinates:
R=R,— A(r,)+r,cosO.
¢ = -G,

Z = r,sinf.

* Flux-type coordinates:

R= R,- A(r;)+ 1, cosO, +1}n(1})(00320f —1) 6 Ees-(L+A')sin9s
@Y= _Cf
Z=r,sin0, +rm(r;)sin20,

1( r d r
_ Here: 107 = | —+A"| with A= DA E_( WL 1)
" Z(R ) dr R ﬁ

0
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Large-aspect-ratio limit (r/R, << 1)

* Expand equations, keeping terms up to O(r/R,)
— Equilibrium magnetic field strength ~ B, [1 — (r/R,) cos 6]
— Define “parallel wave number” k|, .(r) = [m/q(r) = n]/R,
— Fourier decompose as ®(r.0.5)= Y rE,(r) expli(mf - mZ)]

* Low-n TAE equation:

2

2
e e ] e B o o L) [y i
dr Vv, dr\v, v,
d *(dE,  dE
+— r3€(r)w2( m-l 4 m”) = —iL(w)E,
dr v,o\ dr dr

— L(w) represents kinetic (resonant) part of pressure response

— &(r) zg | represents toroidicity, which couples E,. modes

0
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High-mode-number limit

* Consider modes with k, >> &,

— Hence, can ignore fast compressional Alfvén waves: VL(4np + B, -B) ~ ()

e Use high-n ballooning mode representation

D(y.0.8)= D d(y.0-271.8) ® = ¢(y.0.8) explinyx(q6 - C.y]

— Variable y represents rapid cross-field variation (B,-Vyx = 0) , and
function ¢ the slow variation along field line on equilibrium scale

— In the ballooning representation, 0 is an “extended poloidal angle”
with extent -o0 < 0 < +oo

— Expressyas X =q0-C +f dqg0,(y) where 0, is determined by a
higher-order, radially nonlocal analysis
— @ is periodic (even though (’I\) is not)
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High-n TAE equation

e Canonical TAE equation in ballooning representation

2 2
Y+ |Q°(1+ 2 cosh) - >
de’ ( ) (1+5@2)

7| ¥=0

— Toroidicity parameter € = r/R0O << 1
— Magnetic field shear s = (r/q)(dg/dr)
— Normalized frequency Q = w/w,, with Alfven frequency m, = v,/qR,

— Wave function: DO
9(0) = —2L
1+s56

* Solution is a mixture of secular and oscillatory behavior
— Require Y(@)—=0, 6 — =z
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Existence of TAE frequency gap

Examine asymptotic solution (s@ >> 1)

— TAE equation has the form of the Mathieu equation

d2
— +a-2q cos(2z)

= ()
p Y(z)

— Therefore we know the solution has the Floquet form (z) = e** P(z),
where P is periodic with period ;t and the quantity u is evaluated from

2
Hill's determinant as . (m/g)}
Sin
2

, g<<l1

cosh(ur)=1- 2 A(0)

, g nla
_ A(0)=1 t
The quantity A(0) +(1_a)% Cn( 5 )

Focus near Q =%, where sin(2nQ2) flips sign

— Find |cosh(ur)| <1 (unbounded solution) when [Q2-1/2|< (r/R,)+A’,
where A is Shafranov shift: gap of forbidden frequencies

— Analogous to wave propagation in crystalline lattice (Brillouin bands)

ITER International Summer School —June 2011




“Forbidden” frequency zone

4.0

3.5

3.0

2.5

- ———
= - — -—
-~

e o
——
-
-
-
-
-
-
-

Matheiu equation unstable zones

1/2

U.S. BURNING PLASMA ORGANIZATION

-<

r/R,
TAE frequency gap
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Existence of discrete eigenmode

* It can be shown that within TAE gap, there is a discrete
frequency at which the solution is well behaved

w(z)é[A+(w)e+ Re(,u)z_I_A_(a))e—Re(.u)Z]eiIm(M)ZP(Z)

— At some frequency o = wq,g, the coefficient A, =0

* To demonstrate this, we need to solve for A,

— Requires matching the z >> 1 solution to the z << 1 solution, since A, is
a “slow” function of z=6/2
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Two-space-scale approach

* Write 1,/}(9)=wC(H)COS(%)+tps(6)sin(%)

* Decompose TAE equation, retaining only 0/2 variation

2 2
d2+(92—l)+892— > 5 LA
do 4 (1+S292) do

2 2
d2+(92_l)_892_ d 2lps=dwc
do 4 (1_,_3232) do

* Inthe x =50 >> 1 regime, the well-behaved solution is

e (o)

— Frequencies for which (22-1/4)? — (¢€2%)? < 0 are in the TAE gap, whose
boundaries are Q2% =% + £¢Q? ~ %(1+¢)

Y. = Aexp
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TAE dispersion relation

* The large x solution (x = s0 >> 1) can be asymptotically
matched to the small x solution (x ~ 1)

— Analytically obtainable in either low shear (©2/s >> 1) or high shear (€2/
s << 1) limit

— Results in dispersion relation for the TAE

 Example: low shear (s << 1)

. 222\ wis?]
o1 32 ) 16 || 1 7
et L e e Rt L Ll
1- +
32 16

* If repeat the derivation with kinetic resonance term
included, Q.,. becomes complex, giving the growth rate
— Further calculations yield TAE continuum damping
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TAE instability

U.S. BURNING PLASMA ORGANIZATION

* Theoretical growth rate:

9 w 1 v
- o _ _|F— _A
4 2 w, 2 A. v

LA
@

e

e Instability requires:

— Wave-particle kinetic
resonance (v, 2 Vv,)

— Inverse damping (., > w,)
— Growth overcomes damping
(B,/Be > “small number” --

for electron Landau
damping; other damping
mechanisms also important)

13 -3
; (10 cm)

n

Observation Of tor. A/fve’w El;ﬁ—eh modes

PPPL #90T0090

151~

10—

TrTe (K L wonG)
] ]

‘ Ab=2JE'= a12

Ve

this
t

“:’\‘;.‘ .
“Normal Operating
Regime for TFTR

Va= Vp=3.1x 10%cm/sec
Vs = B/(4n mymy) 2

R = 240cm
a=75m
j = 2, pure D" plasma, ng=ni

100kV D'ions = V= 3.1x10° cm/sec’

- 1.0

2.0
B (tesla)

K. L. Wong et al., Phys. Rev. Lett. 66, 1874 (1991)
W. W. Heidbrink et al., Nucl. Fusion 31, 1635 (1991)
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TAE experimental observation

U.S. BURNING PLASMA ORGANIZATION

O——T—T"T"T A4 T T
o/

140} © s%0 q=15 o
130~ /.
120~
110}
¥
= 100}
5
- g0}
80

/
0p X x— B = 10kG, lp= 420KA

A—B = 12kG, lp= 420kA
60 0—B = 12KG, lp= 530KA
I T R R R B

5050 60 70 ‘80 90 100 110 120 130 140
f1h (kHZ)

Energetic beam ions were ejected: = X-
rays dropped 7% in periodic bursts

A later experiment found intense fast
ion fluxes that damaged vacuum vessel
(ripple trapping caused by TAE
resonance)

Frequency scaled linearly with B
Fluctuation amplitude increased with beam

power

X}RAY/HIﬂNOV TFTR #54742 1.688007 - 3.704389s MXPLOT2
1 L T ]

51““"_'“[\ Culsl\ [

I T

XINF  NAVe 20 .
WEam 20,01 ROTS 81105

L KRR

NSOSP NAVe 10 RANGE= 0.199
MEANe  1.110

M@o{p‘rom
LSS on

3.690 3.698 3.700
PROC DATE:23-0CT=-90 RMAJ= 2,41 2= 0.0082 v.t=- 6§ h.f= 138 24
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. H USBPO
Observation of a-driven TAE C2EEreY

30
Pnai I (@)
DT discharge in TFTR IR e
o i 4
: 109 o
— Reduced TAE damping by I 9c ©
. q(0) - 1
observing after turn off of ! o
. v -
beam heating % oL '
2.0
— Looked for low-shear core
localized TAE, guided by theory s of . TAE (n=3) (@)
(104G) g” M \ I
260 . 1(H)
o - f (kHz) 200F __— 1
240 I ] 108 95 3l00 3.05
f [kHz] B 7] ' Time (sec)
220 - .
n B FIG. 1. Evolution of (a) neutral beam power, (b) central
200 ! I L | Ba (0), (c) central safety factor, (d) magnetic shear at
2.9 3.0 3.1 r/a = 0.3, (e) external magnetic fluctuation amplitude, and
Time [s] (f) measured mode frequency for high and low ¢(0) plasmas
[indicated by black (gray) lines] corresponding to the following
plasma parameters at the time of peak mode amplitude: R =
. 260 cm (252 cm), I, = 1.6 MA (2.0 MA), By =5305.1) T,
R. Nazikian, G. Y. Fu, et al., Phys. Rev. n.(0) = 3.3(2.0) X 105 em™, T,0) = 11(15) keV, T,(0) =
Lett. 78, 2976 (1997) 5.4(6.0) keV.
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FREQUENCY

Zoology of *AE modes

I I ' I e —
0 ICE ==
GAE CAE =—
- Alfven continuum
\\\ /
\\ ——
—"'""—__\\—\ SN
~ ~ —_
\\ \\\ r\’/\’ \\ -~
~ ~ N\ \
~o - \\ 7\ \/ \/\ /A
—_——~ - A
Wa e N TN A - ,"’:{‘L_
+ ~ T R S A
i ——— = - \J,\ - &
",/ ~ N T AL~ ]
~
- N KTAE EAE 1
core TAE — \
RN
N AN
N TAE 7 N\~
- \\ \\\ -1
\ Py ! J
\\ // \\ r-TAE \\ 1
4 \ \
i N / *KBM \
[ r-Fishboré RSAE \
~ 1
i I IS NDoNe KBM ,i \ /\\ k
. |_Fishbone ! !
w*| \_I “\ I \\ ,\
1 | 1 1 1 | 1 1 1 | i b 1 ‘ll‘ 1

0.0 0.2 0.4 0.6 0.8

FLUX SURFACE
Heidbrink, Phys. PI. 9 (2002) 2113

U.S. BURNING PLASMA ORGANIZATION

Fast particles can destabilize a large
variety of Alfvén modes (*AE)

— e.g., Toroidal Alfvén Eigenmode (TAE)

Mode identification is robust:
— Frequency, mode structure, polarization

Threshold is determined by balance of:
— Growth rate (reliably calculate)

— Damping rate (calculation is very
sensitive to parameters, profiles, length
scales—but can measure with active/
passive antennas)

Also, Energetic Particle Modes (EPM)

— Exist only in presence of energetic
particles (e.g., NBl or RF ions, alphas)

ITER International Summer School —June 2011
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TAE IMPLICATIONS FOR BURNING PLASMAS
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1 : USBPO
What is a “burning plasma”? V&N

Energy | :
stored in Fusion energy return B¢
nucleus
Sun
v Fission energy return
/ $
Hydroéen Ir(;n Ul’avltium

Nuclear mass

e The energy output E
e “Burning” plasma = ions implications):
undergo thermonuclear fusion E,.=450xE,
reactions, which supply self-
heating to the plasma

out 1S huge (global

e The required energy input E_ is also large:
20 keV = 200 million °K
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D-T fusion

Nuclear cross sections
* The “easiest” fusion reaction uses 10723

hydrogen isotopes: deuterium (D) -
and tritium (T) 10,24;_
— D is plentiful in sea water E
— T can be generated from lithium 25:
— He is harmless (even useful) = 10 -
= %
1[)2 + 1T3 — 2H€4 + 0n1 b '0.26

]

(3.5 MeV) (14.1 MeV)
N 10

Energy/Fusion: e =17.6 MeV

LI lllIll

LI lll"ll

D-D

| - lllllI L i 111l
10
I 2 3
10 10 10

ION ENERGY (KeV)
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Fusion gain Q

100
dW W Igmtlo
ot 0 —> P ot Pheat= 7 W/
e 10
P 5P,
Define fusion energy gain, Q = fusion & _ L
Pheat Pheat 32 \/
P ‘?E L Q 0.01
Define a-heating fraction, f, = U - _ G g
' ch + Pheat Q+5 E‘ Q--0.00t
103
Q 0.0001
Breakeven Q=1 f,=17% e
————————————————————————— 0~o.oooo1 /
Burning Q=5 f,=50% . \.\,
plasma Q=10 (ITER)  f =60% 01 on Temperatune 0
regime Q=20 f,=80%
Q=0 f =100%
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1 . USBPO
Burning plasmas: the next frontier CgsEro

Lawson diagram

100: I lIIIIIII

e Status of magnetic fusion

— Achieved T, required for fusion, but
need ~10 x n T;

-
o

Ignition
— Achieved n t; = % required for fusion,

but need ~10 x T,

EHigher Densi

—h

* Understanding burning plasmas is
today’s fusion research challenge

— Necessary step forward on the path
to fusion energy

0.10F

. . . y Wagnetic
— World fusion program is technically el L

and scientifically ready to proceed

with a burning plasma experiment : ONova indirect dive

(QITER) A P B LR | M | OtLaser D;T
0.1 1 100

CENTRAL ION TEMPERATURE, T; (0) (keV)

LAWSON PARAMETER, n; 7. (10°m™s)

0.01F
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i . USBPO
Science challenges for burning plasmas (===

* Many of the scientific challenges for burning plasmas are the same as
those of today’s experiments, albeit extended to new parameter ranges

— Plasma equilibrium

— Macroscopic stability

— Transport and confinement

— Supra-thermal particles and plasma-wave interactions
— Measurement and control tools

* Burning plasmas also have new challenges
— Dynamics of exothermic medium
— Self-heated and increasingly self-organized
— Large plasma size
— Large population of highly energetic alpha particles
— Thermonuclear environment
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New science issues for burning plasmas

Uniguely BP issues

Aha particles

— Large population of supra-
thermal ions

e Self-heating
— “Autonomous” system (self-
organized profiles)

— Thermal stability

Reactor-scale BP-issues

Scaling with size & B field

High performance

— Operational limits, heat flux on
plasma-facing components

Nuclear environment

— Radiation, tritium retention,
dust, tritium breeding

All issues are strongly coupled/integrated

ITER International Summer School —June 2011
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: : USBPO
Energetic particles Zsero

* In addition to thermal ions and electrons, plasmas often contain a supra-
thermal species = “energetic particles”
— Highly energetic (T;>>T))
— Low density (n; << n,), but comparable pressure (nT;=n.T)

e Energetic particles can be created from various sources

— Externally: ion/electron cyclotron RF heating or neutral beam injection —>
high-energy “tails” of ions and electrons

— Internally: fusion reaction alpha particles; runaway electrons

e The plasma physics of energetic particles is of interest to:
— Laboratory fusion plasmas (alphas provide self-heating to sustain ignition)
— Can excite various types of Alfvén instabilities (since v, ~ v,)

— Can be redistributed or lost, leading to reduced fusion heating, increased
heat loading on walls, etc.

— Space and astrophysical plasmas (e.g., proton ring in Earth’s magnetosphere)
— High-energy-physics accelerators (collective effects)
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. . g USBPO
Alpha particle characteristics V&N

e Plasma ions and electrons: e Alpha particles:
— T,. "~ 10-20 keV — High energy: T, "' = 3.5 MeV
— “Frozen-in” behavior to lowest — Not “frozen” to B-field lines
order (MHD description) (require kinetic description)
— Thermodynamic equilibrium — Low density (n,<n, ), but
(Maxwellian distribution) comparable pressure (p, ~ p;.)

— Non-Maxwellian “slowing down”
distribution

— Centrally peaked profile
‘Vpa/pa‘_l <al2

e Other energetic particles:
— Supra-thermal ions from NBI and ICRH

e Can simulate a-particle effects without reactivity (although NBI/ICRH ions are
anisotropic in pitch angle, whereas alphas are isotropic)

e Also present in burning plasmas with auxiliary heating

— Run-away electrons associated with disruptions
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Birth, life, and death of alpha particles

DT alphas are born in peaked
distribution at 3.5 MeV at rate on /ot =
npn;<oV>

— During time t,, they are slowed down by

collisions with electrons to smoother
distribution at ~ 1 MeV

— After time 1, they thermalize against
both electrons and ions to the plasma
temperature (T, ~ T, ~ 10 keV)

— Alphas are confined for time t,. In steady-
state there are two alpha populations:
slowing-down a’s (n,) and cool
Maxwellian o’s (ny,)

Typically t, ~ 10 t,, ~ 10° 1, : hence a’s
have time to thermalize

_ 1 ~ ~ -3 ~ ~
Sincen,/n,~t./T,~ 103, thenn,, N,
n, (for reactors); hence “ash” (slow a’s) is
a problem in reactors, because it will

“poison” the plasma

U.S. BURNING PLASMA ORGANIZATION

(f.t)/n

19

Birth velocity:

v, ' =13%x10"cm/ s

a

P, }'12<O‘1!> o n2T? pz

')

ITER International Summer School —June 2011



Slowing-down distribution

e The classical steady-state “slowing
down” distribution (isotropic) is

3 3
F(rov)= S(r)rs/4yt(v +V, ), V<V, .
0, v>v, N
Slowing-down time: -
3Smm v’
T, = L = (0.37sec 0 oz a¢ a8 o8 1 1
16\/;Zaze4ne InA, E S
Birth velocity:
Critical velocity (balance ion/electron friction):
173 P2 13%10°cm/ s
37 Z’InA. Va0 '
V.=V, \/7me En’ ’ Ll =4.6x10%cm/s
dm,InA, 5" An,
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USBPO
Temperature dependence Ysro?

e Alpha parameters are determined by the PPPL#90X0355

plasma temperature THERMONUCZDLEAR150-5dOzD-T PLASMA
, ] ] ff =1 an
— For ~10 keV plasma, a’s deposit their off

energy into thermal electrons, with slowing- 1
down time T, « T,32/ n,

LR AL
(NN

— Since the alpha source ~ n_? <Oov>, we have
~ T 3/2 3/2 T2
n,/n,~ T3 <ov> o T 32T,
— For an equal-temperature Maxwellian

plasma, the ratios n./n, and B./By.sma
unique functions of temperature T..

are

T 17T
Louruul

.01

T T TTTTT
| IJllIIIl

.001

S
o
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Significance for ITER CzEro

e Approximately 200-600 MW of alpha heating needed to sustain ignition
— Huge amount of power to handle with no direct external control

* Experimental relevance of alpha e Understanding of alpha physics is
loss: needed to:

— Damage to first wall and divertor — Assure good alpha confinement
plate structure (Wa” |Oading) — Ophm|ze alpha heaﬁng efﬁciency

— Impurity influx — Avoid alpha-driven collective

— Reduced efficiency of current instabilities (*AE modes)
drive or heating

— Operational control problems e Alpha dynamics integrated with
(e.g., thermal burn stability) overall plasma behavior

B Quepchmg of ignition (e.g., fuel — Macro-stability, transport,
dilution by a ash) .

heating, edge, ...
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Parameter comparison &N

Fast ion parameters in contemporary experiments compared with projected ITER values.

Tokamak TFTR  JET JT-60U JET ITER
Fast ion Alpha  Alpha  Deuterium  Alpha Alpha
Source Fusion Fusion Co NBI ICRF tail  Fusion
Reference [3] [3] [34] [20,52] [52]
Ts (s) 0.5 1.0 0.085 0.4

d/a® 0.3 0.36 0.34 0.35 0.05
P;(0) MWm™) 0.28 0.12 0.12 0.5 0.55
ne(0)/n.(0) (%) 0.3 0.44 2 1.5 0.85
B (0) (%) 0.26 0.7 0.6 3 1.2
{Br) (%) 0.03 0.12 0.15 0.3 0.3
max |[RV,| (%) 2.0 3.5 6 5 3.8

v (0)/v4(0) 1.6 1.6 1.9 1.3 1.9

* Differences for fast (“f”) ion physics in ITER:
— Orbit size 8/a in ITER is much smaller
— Most of the other parameters (especially dimensionless) are comparable
— No external control of alphas, in contrast to NBl and ICRH fast ions
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TAE stability in ITER — 1 &

e ITER will operate with a large population of super-Alfvénic energetic particles

— Alfvén Mach number (v, /v,) and pressure (B,) for ITER alpha particles have
similar values as in existing experiments

e ITER’s large size (and hence small-wavelength regime p.., ! = a/p;. >> 1)
implies a “sea” of many potentially unstable TAE modes

— Could cause redistribution or loss of alpha particles (“domino” effect)

6 [T 1 B
: \»\%ARIES-ST 1 ;
A 1 o ARIES-ST _:
L \\\ \_H 4 |
S 4 \ - ‘wQIF 1 5 4+ -
E \ ) Z | CTF
= st B : 15 3} ;
% f % [~ NST
[ ITER NSTX ™\ NSTX
S 2 e 1520 'TER 1
1 i E— - _ 1L
: DIII-D )
) AT T DT 0
0.0 0.2 0.4 0.6 08 00
Brast(0) / Prot(0) minor radius / peast
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TAE stability in ITER — 2 &

0.4 , ¢ NBlions and alphas e |TER will have 1 MeV negative-ion
= alphas only neutral beams for current drive &
0.2t ¢ - heating
— ¢ — Theory predicts that these NNBI
= ‘.‘U”Stable energetic ions can drive TAE
3 . ot ' stable instability, comparable to alpha
o= " N N R R particles
0.2y £ s = B — With the beam ion drive included,
° * ¢ the stability prediction for ITER
-0.4 ¢ % ' changes (at 20 keV) from
0 : ¢ 1IO 1._1-5 = 210 55 marginality to definite instability
n — A model quasi-linear calculation
predicts negligible to modest
N. Gorelenkov losses
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Alfvén instabilities as plasma diagnostic

Internal transport barrier (ITB) triggering event

SBPO

U.S. BURNING PLASMA ORGANIZATION

— “Grand Cascade” (many simultaneous n-modes) occurrence is coincident with ITB

formation (when q,,,,, passes through integer value)
— Being used on JET as an internal diagnostic to monitor q,,;,

— Can create ITB by application of main heating shortly before a Grand Cascade is

known to occur

Pulse No: 40410
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TAE RESEARCH PROGRAM
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ITER will demonstrate the scientific and technological USBPO
basis for fusion energy '*

* ITER (“the way”) is essential next step in
development of fusion

— Today: 10 MW, 1 sec, gain=1
— ITER: 500 MW, > 400 sec, gain > 10

 The world’s biggest fusion energy
research project (“burning plasma”)
— 15 MA plasma current, 5.3 T magnetic field,
6.2 m major radius, 2.0 plasma minor
radius, 840 m3 plasma volume,
superconducting

— €10B to construct, then operate for 20 years
(First Plasma” in 2019, DT in 2027)

O 1 0 20 30

* An international collaboration
E — 7 partners, 50% of world’s population
— EU the host Member, sited in France
///.‘\\

— Excellent example of US involvement in big-
Q science international physics collaboration

(cf. Large Hadron Collider, ALMA telescope)
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USBPO: physics support for ITER

e U.S. Burning Plasma Organization is community-based

— Mission: Advance the scientific understanding of burning plasmas and
ensure the greatest benefit from burning plasma experiments by
coordinating relevant U.S. fusion research with broad community
participation

 Broad community participation:
— Regular members (316 from 55 institutions)
— Associate members (15 from 9 non-US institutions)

 USBPO web site (www.burningplasma.org)
— All presentations, white papers, progress reports are publicly available

— eNews monthly newsletter: 480 subscribers (from 95 institutions)

» “Director’s Corner” column, feature articles, ITPA meeting reports,
calendar of fusion events, research highlights, community reports
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USBPO role in ITER support

* USITER Project Office ITER Organization
(ORNL) ITER Task
— Main link to ITER Advisory Ag.reemenfs
— Provides hardware & Groups . Domestic
. e . Agencies
technical contributions ! (US IPO)
ITPA__ |------- '
. USITPA | |
USBPO members [——L__USBPO VLT
— Coordinates US burning U ol T
: ysics
plasma physics research Community |<=>| Technology
— USBPO director is also the (TTF,...) Community
US ITER Project Office chief
scientist

— Companion to Virtual
Laboratory for Technology
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2 . USBPO
Expertise of USBPO topical groups Ysro?

Jim Van Dam (Director) Council:

Chuck Greenfield (Deputy Director) Mike Mauel (Chair)
Nermin Uckan (Assistant Director for ITER Michael Bell (Vice Chair)
Liaison) +10 members at large

Executive Committee
members in red

/ Research Committee made up of \
Topical Group Leadership

R asowr | SR Soosehotee” |
EmaETCh | RARERER v |

ITPA

)
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. . USBPO
ITPA also has Energetic Particles group 22229

( MHD, Macroscopic Plasma Physics ) f MHD

L Ted Strait, Francois Waelbrock ) L

4 ) (
Plasma-Boundary Interfaces L Hi] ]
Tom Rognlien (PED) ‘,

\Tony Ltz Ll y Divertor and Scrape Off Layer

( Energetic Particles

L Donald Spong, Eric Fredrickson Energetic Particles

( Integrated Scenarios

| John Ferron, Amanda Hubbard Integrated Operational Scenarios

Operations and Control
David Gates, Mike Walker

(ITPA members)

Plasma-Wave Interactions
Steve Wukitch (EP), Gary Taylor

 Confinement and Transport
L John Rice, George McKee

Transport and Confinement

US BPO Topical Groups and leaders

( Diagnostics

L Jim Terry, David Brower R

( Modeling and Simulation
| Dylan Brennan, David Mikkelsen (T&C)

Fusion Simulation Project

A J

[ ITER Working Group on Integrated
L Modeling (Houlberg)

Fusion Engineering Science [ US and International technology
Richard Nygren, Larry Baylor L communities

J

Mar 2010: Plasma-Boundary Interfaces topical group was renamed “Pedestal and Divertor/SOL”

ITER International Summer School —June 2011 55



USBPO
2010 I1SS CY58r0

4" |TER International Summer
School held in US last year
— May 31-June 4, University of Texas

— Sponsors: National Instruments,
USBPO, French Embassy in US, ....

* Theme: MHD and Plasma Control 20 lecturers from 7 countries & ITER
in Magnetic Fusion Devices —

* Participation
— 133 participants from 17 countries
and 48 institutions

“Fusion is the future,
and the future is in your hands.” 4 computer lab sessions
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Burning plasma at APS-DPP Meeting

 Town Meeting on ITER Status (Tues, Nov 9, 2010)
— Gyung-Su Lee (MAC): New ITER Baseline and Risk Assessment
— Alberto Loarte (ITER): Scientific Status of ITER
— Brad Nelson (USIPO): US Engineering and Technology R&D for ITER
— Jim Van Dam (USBPO): US Scientific Contributions to ITER R&D
— Discussion session: moderator Mike Mauel (USBPO Council)

 Two contributed ITER oral sessions (@ 11 ten-minute talks)

 Town Meeting talks are posted on USBPO web site

* Likewise, being organized for 2011 APS-DPP Meeting
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SUMMARY

- O . ¥ |

* Burning plasma studies on ITER open up new regime of plasma
physics of an exothermic medium
— A “grand challenge” problem, with potential social benefit

* Dramatic scientific progress in last two decades has laid the
foundation for burning plasma experiments

— Coordinated efforts of Experiments, Diagnostics, Theory, and Simulations
to create validated predictive models of plasma behavior

— Alfvén wave instabilities are important topic for burning plasmas

e Construction has begun of long-awaited world’s first burning
plasma experiment: ITER

— Many exciting near/longer-term research issues in burning plasma
science for ITER operation and next-generation experiments (DEMO)



. USBPO
References: Burning Plasmas C258r0.

*  Final Report—Workshop on Burning Plasma Science: Exploring the Fusion Science Frontier
(2000) http://fire.pppl.gov/ufa_bp_wkshp.html

*  Review of Burning Plasma Physics (Fusion Energy Sciences Advisory Committee, 2001) http://
fire.ofes.fusion.doe.gov/More_html/FESAC/Austinfinalfull.pdf

*  Burning Plasma: Bringing a Star to Earth (National Academy of Science, 2004)

* R. Hawryluk, Results from Deuterium-Tritium Tokamak Confinement Experiments, Reviews of
Modern Physics v. 70, p. 537 (1998)

* Presentations at USBPO Burning Plasma Workshop 2005
www.burningplasma.org/reference.html (energetic particle physics plenary talk, break-out
group presentations, and summary)

* ITER Physics Basis, Chap. 5 (Energetic Particles), Nuclear Fusion (1999); Progress in the ITER
Physics Basis, Nuclear Fusion (2007)

* R.J. Fonck, Scientific Developments in the Journey to a Burning Plasma, invited talk at 2009
APS Spring Meeting (http://burningplasma.org/reference.html)
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: USBPO
Some classic TAE references CgsEro

Fast ion excitation of Kinetic Alfvén Wave

— M. N. Rosenbluth and P. H. Rutherford, “Excitation of Alfvén Waves by High-Energy lons
in a Tokamak,” Phys. Rev. Lett. 34, 1428 (1975)

 Existence of discrete TAE mode

— C.Z.Cheng, L. Chen, and M. S. Chance, “High-n Ideal and Resistive Shear Alfvén Waves in
Tokamaks,” Ann. Phys. (NY) 161, 21 (1985)

* TAE excitation by alpha particles

— G.Y.FuandJ. W. Van Dam, “Excitation of Toroidicity-Induced Shear Alfvén Eigenmode by
Fusion Alpha Particles in an Ignited Tokamak,” Phys. Fluids B 1, 1949 (1989)

e Core-localized TAE

— G.Y. Fu, “Existence of core-localized toroiicity-inducedl| Alfvén eigenmode,” Phys.
Plasmas 2, 1029 (1995)

— H. L. Berk et al., “More on core-localized toroidal Alfvén eigenmodes,” Phys. Plasmas 2,
3401 (1995)
* Continuum damping of TAE

— M. N. Rosenbluth et al., “Mode structure and continuum damping of high-n toroidal
Alfvén eigenmodes,” Phys. Fluids B 4, 2189 (1992)
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For the Toroidal Alfvén Eigenmode,
calculate the g-value where the gap is
located and estimate the typical TAE

mode frequency. s
3|<
— Repeat this exercise for the Ellipticity- 5

and Triangularity-induced Alfvén > |

Eigenmodes < ap/?a0)
o2} “ -
Ol | A 1
0 0.25 0.50 075 1.00
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i : . USBPO
Exercise #2: Nonlinear fishbone cycle C—

e Consider a simple model for the fishbone cycle e
[R. White]. Assume the trapped fast ions are 2 24 | el
deposited at rate S until the threshold beta B is % 221 \
reached. Model the losses as a rigid o200  Mode]
displacement of the trapped particles toward the T T ASSAAS e AN
wall. Equations for the trapped particle beta 3 _ ]
and the mode amplitude A are: B
@ 0] -
Do BogBal | W ——
dt c dt 0 [))C 2589 2591 25_?.?ME (mZ:)QS 2597 2599

— Show that the solution of these equations will be cyclic. [Hint: Approximately plot 3 and A as
functions of time. Then, from the equations, construct a function F(f, A) that satisfies dF/0t = 0.
Approximately plot the contours F = constant in 3-A phase space. Show that F is minimum when

B =P.and A=S/B..]

e |f the losses are diffusive, rather than rigid, then df3/dt = S - AP. In this case, show that oF/
0t<0, with 0F/9t=0 only at B=f_, and that the solution spirals toward this fixed point.
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