4 th ITER International Summer School 2010

Progress of the ITER Project

Gary Johnson Deputy Director General - Tokamak Cadarache, France, May 31, 2010

Contents

- ITER Project
- Scale of ITER
- Technical Systems & Status
- The Future

ITER Project

ITER - A Unique Scientific, Technological and Industrial Project

Seven Party Sharing

•Objective - Demonstrate the scientific and technological feasibility of fusion energy
•Goal - produce a significant fusion power amplification (10x the energy input):output 500 MW
•Costs - ~5 B € for construction (Based on 2001 FDR) (Note - A new cost baseline is expected to be approved by the IC in June 2010.) Plus contributions of local area - 467 M €

china eu india japan korea russia usa 🛛 IISS 2010, Austin, Texas, May 31, 2010

In-Kind Contributions (Credit Values)

ITER Organization Structure

Staffing (Feb 2010)

	Professional staff	Support staff	Total
CN	16	2	18
EU	180	115	295
IN	15	14	29
JA	23	6	29
KO	20	5	25
RU	20	2	22
US	24	8	32
Total	297	153	450

Proposed Baseline Schedule for 2019 First Plasma

Licensing Process

- Construction Permit was awarded in April 2008;
- On 31 January 2008, the files for "*Demande d'Autorisation de Creation*", including the Preliminary Safety Report, were sent to the French Nuclear Authorities;
- In July 2008, the French Authorities asked questions and requested additional documentation from IO;
- The IO will provide the French Nuclear Authorities with the updated information and RPrS documentation by the end of March 2010;
- The ITER CLI (*Commission Locale d'information*), including international experts, was already established by the end of 2008, and the first meeting of ITER CLI was held on 7 December 2009;
- Public Enquiry is expected in autumn 2010.

ITER Construction Site

tien china eu india japan korea russia usa IISS 2010, Austin, Texas, May 31, 2010

TF Coil ~360 t 16 m Tall x 9 m Wide

VV Sector ~400 t 12 m Tall x 9 m Wide

Roads Upgrades Complete

Heavy Component on Road (TF Coils, VV Sectors, & PF1 Coil)

The Scale of ITER

Cryostat Size Comparison

ITER Cryostat ~28 m Tall x 29 m Dia.

Jefferson Memorial (Washington DC) ~29 m Tall (floor to top of dome)

tera china eu india japan korea russia usa IISS 2010, Austin, Texas, May 31, 2010

ITER Tokamak – Mass Comparison

ITER Machine mass: ~23000 t 28 m Tall x 29 m Dia.

USS Enterprise mass: ~93000 t (fully loaded) 1123 ft (342 m) long (Commissioned 1961)

Vacuum Vessel - Mass Comparison

VV & In-vessel components mass: ~8000 t ~19.5 m outside diameter x 11.2 m tall Eiffel Tower mass: ~7300 t 324 m tall (Completed 1889)

Mass of (1) TF Coil: 16 m Tall x 9 m Wide, ~360 t

Boeing 747-300 (Maximum Takeoff Weight) ~377 t

ITER Buildings and Facilities

PF Winding Building – ~250 m (820 ft) x 45 m (148 ft) Cryoplant – 65 kW at 4.5 K & 1300 kW at 80 K Second largest in world

Tokamak & Assy building - 6 levels @ 166 m x 81 m x 57 m high (~36000 m²)

Magnet power convertors buildings (~1000 MW output power)

Tritium building – 7 levels @ 25 m x 80 m (~14000 m²) Largest throughput in world (~300 kg/yr).

Area - 60 hectares (~150 acres)

Hot cell – 60 m x 70 m

Technical Systems & Status

Magnet System

Magnet Energy Comparison

Superconducting Magnet Energy: ~51 GJ

Charles de Gaulle Energy: ~38000 t at ~180 km/hr

or The energy of ~19000 Audi A5's each at ~180 km/hr

ITER Magnet Field

Earths Magnetic Field ~ 0.5 gauss or 0.5x10⁻⁴ Tesla

ITER Field ~10 Tesla or 200,000 x Higher

Conductor Status

TF Conductor

PF Conductor

CS Conductor

TF - Status

- All six TF conductor PA's signed
- Contracts placed in JA, CN, KO, RF, US for TF cond. proc.
- Three jacketing lines built (TF, PF,& CS)
- Strand production underway in JA, KO, RF, US, and EU
- Strand production non-conformances issued and resolved in Japan, Korea, Russia, and US (QA documentation issue)
- Cabling underway in Japan, Korea and Russia
- Jacketing underway in Japan

PF - Status

- All three PF conductor PA's signed (CN, RF, & EU)
- Contracts placed in CN for PF conductor procurement
- Agreement between EU and RF for collaboration on P6-P1 conductor supply to reduce duplication

CS Status

- CS conductor PA signed (JA)
- 316LN (low carbon material as in TF conductor) selected for CS jacket and trial batch fabricated by Cevifal

CC & Feeder Status

• CC & feeder conductor PA signed in May 2010 (CN)

TF Strand Production Status

• JA, KO, RF, EU, US have launched strand industrial production and started data input into ITER Conductor Database.

Database; this corresponds to the material needed to manufacture ~4 TF coils.

TF Cable Production Status

• JA, KO and RF have produced 760 m Cu dummy cable qualification lengths, and JA and KO have produced first superconducting cable lengths.

Cabling of 760 m Cu Dummy at VNIIKP, RF (Feb. 09)

TF Conductor Production Status

• JA has completed jacketing of 760 m Cu dummy cable and first three superconducting cables (100m and 2 x 420m).

Cable Insertion

Compaction & Spooling

ten china eu india japan korea russia usa 🕴 IISS 2010, Austin, Texas, May 31, 2010

- Signed a procurement contract for TFC PA's (Toshiba is main contractor; KHI and CNIM are sub's).
- Commissioning of winding machine @ Toshiba in progress
- Welding trials in progress @ KHI for TFCS and TFC Case

Europe

- Signed a procurement contract with CNIM (FR) and SIMIC (IT) for prototype radial plates
- Winding Package (WP) call-for-tender underway
- Contract signed with CSM (Centro Sviluppo Materiali IT) for the qualification of the TFC Case

welds IISS 2010, Austin, Texas, May 31, 2010

TF Coils Progress (KHI-JA)

TF Coils - A Worldwide Collaboration

CS, PF, & CC Status

Central Solenoid (13.6 m tall x 4.2 m dia ~1000 ton)

Status

- CS Conductor FDR Sept 09
- CS Coil CDR Sept 09
- Design in progress in US

PF Coils (6) (PF3 - 24.8 m dia & ~386 ton)

Status

- PF Coil 2,3,4,5,&6 PA signed with EU
- PF Coil 1 drawings being prepared for RF
- PA signing expected in June 2010.

Status

Design complete

Correction Coils (9 pairs)

PA signed May 2010
 with China

Feeders Status

Facts

- First safety barrier for ITER
- SS 316 LN-IG
- ~5300 tons (VV, ports, shielding only)
- 19.4 m (63 ft) torus outer diameter
- 11.3 m (37 ft) torus height

VV Status

ELM & VS Coils

Status

- Received preliminary approval of VV design at end of phase 1 (from ANB)
- ELM & VS coil interfaces fully implemented in the VV
- VV sector and port PA's signed (EU, KO, IN, & RF)
- KO VV & port contract awarded to Hyundai Heavy Industries
- Final VV models & drawings issued May 31
- Manufacturing schedule is on critical path!!!

🔞 china eu india japan korea russia usa 💷 11ວວ 2010, AUSUII, TEXAS, MAY ວ1, 2010

Thermal Shield Status

Status

- PA signed in May 2010
- Final drawings issued Oct 2010

Cryostat Status

Status

- CDR completed in November 2009
- PDR planned for June 2010 and FDR planned for Sept 2010
- PA signing planned for October 2010
- Interfaces with major Tokamak systems are identified and ICDs are prepared.
- Global Structural, EM, thermal and seismic analysis report is under review.

Facts

- 440 blanket modules
- -~4 tons each
- 18 poloidal rows
- 18 or 36 toroidal rows
- ~40 different modules
- Mass: 1530 tons

Status

Shield Module

First Wall Panel

- CDR held in February, 2010
- Conceptual blanket / FW design for typical modules Nos. 4, 8 and 12 completed
- Design supporting analysis completed for the above modules
- FW shaping in progress

FW Pre-qualification

Mock-ups

Semi-prototype

Objectives

- Demonstrate technical capability prior to start procurement
- Phased approach
 - Mock-up: Demonstration/validation joining of Be/CuCrZr & SS/CuCrZr
 - Semi-prototype: Production/validation of large scale components

Status

- Mock ups provided by US, EU, RF, KO, CN and JP
- Nearing completion of the formal test program - 12,000 normal cycles at 0.875MW/m² and 1000 MARFE cycles at 1.4MW/m².
- First wall semi-prototype phase will start with (US, EU, RF and CN) within the next few months.

Status

- Design complete
- Four of five PA's Signed
- Licensing classification of Divertor components being resolved
- (PED/ESPN are out of scope)

Full-scale Divertor Installation into the Vacuum Chamber at DTP2

Objectives:

- Demonstrate the feasibility to install the divertor assembly into the vacuum vessel by means of RH tools

Status

- Installation of the "second" cassette successfully demonstrated at DTP2 in Finland

Divertor Qualification Prototypes

Objectives

- Qualification of critical divertor components

Status

- All the 3 Domestic Agencies have qualified
- Pre-PA Qualification process successfully completed in all the concerned DAs.

Where do we go from here?

The Roadmap Beyond ITER

Now we are firmly on ITER (the way)...

iter china eu india japan korea russia usa IISS 2010, Austin, Texas, May 31, 2010