

IPP

F. Wagner

Max-Planck-Institut für Plasmaphysik, Greifswald, EURATOM Association

ITER is a "tokamak"

Poloidal field and rotational transform ι from current $I_{\rm p}$

Separatrix, X- point, divertor for exhaust and power handling

Geometry: R_0 , a, a/ $R_0 = \varepsilon$ b/a = κ , δ = triangulariy

The demonstration of the scientific and technological feasibility of fusion

Fusion power $P_{fus} \sim 400 - 500 \text{ MW}$ (for 400 s); $Q = P_{fus}/P_{aux} \sim 10$

Basis for $\mathsf{P}_{\mathsf{fus}}$ and Q: Lawson diagramme, triple-product $\mathsf{nT}\tau_{\mathsf{E}} \sim Q$

- T: at maximum of fusion yield (15-20 keV)
- n: is an operational parameter; P_{fus} ~ n²; n is limited by Greenwald density limit n_{GW}

 τ_{E} = energy confinement time; determined by cross-field transport; predicted ITER value taken from multi-machine scaling

 $nT\tau_{E} > 6 \ 10^{21} \ m^{-3} \ keV \ s$

The pathfinders for ITER

Major radius	6.2 m
Minor radius	2.0 m
Toroidal field	5.3 T
Plasma current	15 MA
Elongation κ	1.85
Triangularity δ	0.49
Fusion power	400-500 MW
Q	~10
Burn duration	~ 400 s

 Δ ~ 2 m; δ ~ 1.3 m

Aspect ratio: $A = R_0/a$

a determined by confinement to meet $nT\tau_E$ goal

Scaling of τ_{E} and projection to ITER

The shape of the ITER plasma

Achieve projected fusion yield: heating (internal, external) and confinement

Ash removal in the core: Transport (D, v_{in}); $\tau_{He}^*/\tau_E \sim 5$

Ash removal from the system: divertor retention, recycling

Stable operation:

limits which terminate operation (via disruptions) density limit (Greenwald): $n_{GW} \sim 10^{20} I_p / \pi a^2$ (MA, m); n < 0.85 n_{GW} beta-limit (Troyon): $\beta \sim I_p / aB$ current limit: q = 2.5 a² (B/RI_p) ((1+ κ^2)/2) > 2 (q_{ITER} ~ 3) elongation limit: κ < 2

Avoidance of MHD leading to performance reduction

sawteeth in the core:

Relaxations of T; spreading of α -particles, triggering of NTMs

neo-classical tearing modes (NTM): limit in energy content W ($\beta_N = \frac{\beta(\%)}{I_p(MA)/aB}$) $\beta_n < 2$ (2.8)

Edge localised modes (ELMs): divertor power fluxes ~ 20 MW/m^2

Alfven activities: fast particle spreading, losses

The basic operational regime for ITER: ELMy H-mode

The 16.1 MW DT discharge of JET

11

Confinement improved to the L-mode by factor 2 (H_{89} =2)

Edge pedestal 2.0 l_=4MA JET **ELMs** H-mode 1.5 Confinement Time τ_{E} (s) Power threshold: 1.0 H-mode: $P > P_{IH}$ $P_{LH} = 2.84 M^{-1} B^{0.82} \overline{n}_{20}^{0.58} Ra^{0.81}$ (MW) 0.5 Note the isotopic dependence L-mode 0 10 In Deuterium, $P_{IH}^{ITER} \sim 50 \text{ MW}$ 20 30 0 Input Power (MW)

Development of a pedestal

Which Q and P_{fus} will be achieved?

How do Q and P_{fus} depend on external parameters e.g. B.

Is the H-mode accessible: P_{LH} (special question: $P_{LH} = f(A_i)$)?

What is the pedestal height, specifically T-pedestal?

What is the density profile shape ?

Will the ITER plasma rotate?

Will ITER operate in advanced confinement modes?

At what n/n_{GW} does the confinement degradation set in?

Will there be sawteeth in the core: amplitude and period?

The T pedestal height has strong impact on T(0), on P_{fus} and Q

The density profile shape – peaked or flat? peaked at large v_{in}/D medium n_e - gradients : turbulent fluxes lower strong n_e - gradients: turbulent fluxes higher because of TEMs strong peaking: neo-classical impurity accumulation?

higher n_e-gradients => smaller T-gradients => lower fusion yield

In case of toroidal flow: does it reduce turbulence and even cause ITBs (depends on torque and $\chi_{\phi})$

The stiffness of the T-profiles:

very stiff: weak increase of T with power; Q goes down with P_{aux}

Abbreviations: TEM = trapped electron mode ITB = internal transport barrier

0-dimensional scaling allows the prediction of τ_{E} e.g. via the $\tau_{E,th}^{98(y,2)}$

Profile knowledge needs theory-based transport models for energy, particles and impurities; not available in necessary detail

One step before: similarity approach = scaling along dimensionless parameters

Relevant dimensionless parameters (Kadomtsev):

 $\beta \propto nT/B^2$

measure for the energy content, the driving mechanisms measure for dissipation

 $ho^* =
ho_{Li} / a \propto \sqrt{T} / aB$

 $\nu^{*} \propto Rq/\lambda_{mfp} \propto Rqn/T^{2}$

measure of the orbit effects

The 98(y,2) τ_{E} scaling in dimensionless parameters: $\tau_{E}B \sim \rho^{* -2.7} \beta^{-0.9} v^{*-0.01}$

Compare plasma states with identical parameters $(\rho^*, \beta, \nu^*, q, geometry (A, \kappa, \delta), profile shapes..)$

Scale transport coefficients along dimensionless parameters; map profiles

Under these circumstances, the energy content W scales: $W \propto B^2 a^2$

 $T \propto B^{2/3} a^{1/3}$

From these relations, the scaling of the external parameters B (or I_p), P_{heat} and n (Φ_{gas}) can be obtained along dimensionally correct paths when scaled as B^{*}, P^{*} and n^{*}:

$$B^* = Ba^{5/4} \propto \beta^{1/4} v^{* - 1/4} \rho^{* - 3/2}$$

With the assumption of gyro-Bohm scaling the following scaling for the heating power P is obtained:

$$P^* = P_{heat} a^{3/4} \propto \beta^{7/4} v^{*-3/4} \rho^{*-3/2}$$

The density can be scaled in 3 different ways; the physically most reasonable one is the one which varies closest to the (dimensional) Greenwald limit:

$$n^* = n B^{-1} a^{3/4} \propto \beta^{3/4} v^{* 1/4} \rho^{* -1/2}$$
¹⁸

IPP

Under the condition that n* is kept constant, the operational range of present devices and that of ITER can be plotted in a diagram of dimensionally correct parameters:

For present devices:

Possible:

operation at the β of ITER

Not possible:

operation at ρ^{*} or ν^{*}

If the density constraint is removed operation at the ITER ν^{\star} is possible

This scaling goes to the basics of confinement: Bohm- or gyro-Bohm scaling

Bohm – scaling: Turbulence correlation length ~ $\sqrt{a\rho_L}$

 $\tau_{\text{EB}} \thicksim \rho_{\text{L}}^2$

gyro-Bohm scaling: Turbulence correlation lenght ~ ρ_L

$$\tau_{Eg-B} \sim \rho_L{}^3$$

Global scaling: $\tau_E B \sim \rho^{*-(2.78-3.15)}$

Dimesionless scaling from JET to ITER at v^* = const. and β = const.

Outcome of JET ITER-like discharge "ITER" / JET

- B = 5.6 / 3.46 T
- a = 2.0 / 0.96 m
- $\tau_{\rm E} = (3.74 5.6) / 0.51 \, {\rm sec}$
- Pfus = 275 MW
- Q = (6.2 12.3)

The scaling of particle transport with collisionality

Global scaling: $\tau_E B \sim v^{*-(0.01-0.35)}$

This subtlety not obtained from global scaling.

Peaking factor >1.35 expected for ITER.

Possible chain: $v_{in} \Rightarrow n_0/\langle n \rangle_{vol} \Rightarrow c_{He} \Rightarrow Q$

[359] Angioni C. *et al* 2003 *Phys. Rev. Lett.* **90** 205005 [360] Angioni C. *et al* 2003 *Phys. Plasmas* **10** 3225

Weisen, Angioni, Watkins

Global scaling: $\tau_E B \sim \beta^{-\alpha}$ with $\alpha = -0.9$

The devoted scans show $\alpha \sim 0$: big conflict !

23

2000 COLUMN 1.21.4 **POP-CON** diagrammes 1.21.0 10²⁰ m⁻³ 1.0 n_e / n_{GW} Volume average Basis is the 98(y,2)0.8 9.0 n, n/n_{GW} versus T 0.8 scaling <De> 0.6 $\tau_{\mathsf{E}}\mathsf{B} \thicksim \beta^{-0.9}$ For different Q (red) 0.4(a) (P666(y,2) 0.20.2with 12 10 14 1.8 different β_N (blue) 50 Basis is a pure 1.4 el. static model <ne>< 10²⁰ m⁻³ 1.21.0and 20 n_{GW} 1.0 $\tau_{\mathsf{F}}\mathsf{B} \sim \beta^0$ different P/P_{LH} (green) a.o 0.6 с е 0.6

0.4

0.2

21

(b) Electrostatic

6

1.0 1.3

10

12

ð,

<T_e> keV

OR.

Petty, DIIID

24

Confinement predictions for ITER

Dimensional scaling: 3.6 sec

Dimensionless scaling: 3.3 sec

- What are the robust confinement characteristics
- which evolve from a complex chain of interactions and causalities
- and which ultimately need theoretical understanding
- and predictive modelling ?

Transport based on Coulomb collisions in toroidal geometry

Heat diffusivities:

 $\chi_i \sim \chi_{i,neo}\,$ at low heating power, at peaked n_e profiles or inside ITBs χ_e always turbulent

D and D_I normally turbulent;

 $v_{in} \sim v_{in,neo} = v_{warepinch}$ at high collisionality

 $v_{l,in}$ normally neo-classical: impurity accumulation with peaked proton profiles

Momentum transport mostly turbulent

Effects of paralled dynamics often neo-classical bootstrap current neo-classical correction to resistivity fast particle slowing down flow damping

Ambi-polar electric field mostly neo-classical.

Turbulent transport

Space scales:

perp. correlation length: $k_{\perp} \sim \rho_i (\rho_e)$ parallel correlation length: $k_{||} << k_{\perp}$ Gradient length $L_p >> k \perp^{-1}$

Time scales: Drift frequency: ω ~ c_s/L_p; v_{The}/L_n

 $D_{turb} \approx \frac{\gamma}{k_{\perp}^2} \sim 1 \text{m}^2/\text{s} \implies \tau_{\text{E}} \sim O(1\text{s})$

S.J. Zweben *et al.,* Phys. Plasmas **9** (2002) 1981

TRANSPORT IS DRIVEN BY SEVERAL TURBULENCE MODES WITH A RANGE OF SPATIAL SCALES

[22] Doyle E.J. et al 2000 Fusion Energy 2000: Proc. 18th Int. Conf. (Sorrento, 2000) (Vienna: IAEA) CD-ROM file EX6/2 and http://www.iaea.org/programmes/ripc/ physics/fec2000/html/fec2000.htm

A density perturbation leads to flows of the ions in perpendicular direction (polarisation drift) of the electrons in parallel direction charge separation => ExB flows convect plasma

collisionality and trapped particles can affect the electron flow

For toroidal modes, the instability threshold depends on R/L_T

W7-AS

Variation of T_e profile

with variation of location

of power deposition

" The tail wags the dog "

ASDEX-upgrade

pendent of

- plasma current
- heating power
- density
- ion mass

See discussion later on H-mode pedestal

8

Universality, scalability of critical gradients

JET and ASDEX-upgrade show similar profile relations: $T_i(\rho_a) \propto T_i(\rho_b)$ in L- and H-modes

Comparison of experimental results with gyro-kinetic calculations

Similar results from T_i profile analysis and γ and R/L_{Ti} for ITGs

Observation: gradient in n in radial zones with $S_{ion} = 0$. $\Gamma = -D \nabla n_e + v_{in} n_e$

Expectation: effected is either electron or ion transport or both (e.g. when temperatures are largely different)

Basic problem now:

Plasma heating does not much increase the energy content

but increases only the turbulence level

beneficial would be the increase of the edge pressure pedestal but: MHD limits

H-mode and edge transport barrier

a spontaneous and distinct transition during the heating phase both energy- and particle confinement time increase the tracer for the transition is the H α -radiation new instabilities appear in the H-phase: ELMs, edge-localised modes

41

Def. $H_{89} = \tau_E^{H} / \tau_E^{L}$

44

Theory: Development of bifurcation models

A feature of bifurcations: Limit-cycle oscillations (dithers)

Edge Transport Barrier in density and temperature

45

μμ

Edge and SOL probed with sawteeth after NBI switch-on

46

μμ

1. Step: sheared flow decorrelates turbulence History:

> S-I and K Itoh: bifurcation model on basis of E_r Biglary, Diamond, Terry: shear decorrelation concept Bo Lehnert (1966): 1st prophecies

Gyrokinetic particle simulation of plasma microturbulence

2D:

Fluxes, transport coefficients are intrinsically ambi-polar and do not explicitely depend on ${\sf E}_{\sf r}$

$$\langle j_r \rangle = 0$$
, independed of E_r

3D: $<j_r > = 0$, ensured by $\Gamma_e = \Gamma_i$: enforced ambi-polarity

$$\Gamma = -D_{1}(E_{r})n\left\{\frac{1}{n}\frac{\partial n}{\partial r} - q\left(\frac{E_{r}}{T}\right) + \frac{D_{12}}{D_{11}}\frac{1}{T}\frac{\partial T}{\partial r}\right\}$$

 $E_r = \nabla p_i / en + (D_{12} / D_{11} - 1) \nabla T_i$

The composition of E_r

 ∇p_i plays an important role In a fully developed H-mode: it stabilises the mode

Temporal characteristics of $L \Rightarrow H$

There is a pre-phase Jump of E_r at the L=>H transition

 $(\tau << \tau_E)$

W7-X, JFT-2M: t ~ 12 μ s

T_i changes slowly

 ∇p_i cannot be the transition trigger

Short timescale indicates: Transition trigger related to $v_{\theta}B_{\phi}$ Turbulence level drops joinly with E_r

R.A. Moyer et al., Phys.Plasmas, 2, 2397, 1995

TEXTOR: H-mode induced by polarisation probe

- E_r is oscillating
- n_e (gradp_i) also oscillates

Analysis done by K.H. Burrell, Phys. Plasmas

Causality: ∇E_r leads n_e by about 5 ms

Turbulence => Reynoldsstress ($\langle \widetilde{v}_r \widetilde{v}_{\theta} \rangle$) => flow => decorrelation of turbulence

Poloidal force balance: $0 = j_r B/n_i - m_i \mu_{\theta} v_{\theta i} + m_i \frac{\vartheta}{\vartheta r} (\langle \tilde{v}_{ri} \tilde{v}_{\theta i} \rangle)$

Reynolds stress leads to steady-state flow

Understanding parts of the H-mode

Self-induced flows from the turbulence field regulates the turbulence level.

Mechanisms:

Reynolds stress

spectral transport from small to large scales equilibrium flows, zonal flows, GAMS

sheared flow reduces turbulence

 ∇p_i rises, deepens E_r well; stabilises H-mode

G. Sips, ASDEX-upgrade

Instead of 70 MW ITER would need 140 – 280 MW

L.Gionnone et al PPCF 46 (2004) 835

Internal transport barrier (ITB)

External and internal transport barriers

Electron transport barrier with electron resonance heating

in special mode:

counter – ECCD

which shapes the q-profile

 ITB layer with steep temperature gradient

Poloidal velocity from charge exchange, during ITB formation

 Measured poloidal velocity in ITB layer (60km/s) highly anomalous, far higher than neoclassical (~5-10km/s)

Most probable: shear-flow effect for i-ITB (2)

ASDEX Upgrade

Steep transport barrier at r/a \approx 0.5 with toroidal flow

strongly sheared plasma rotation => dE_r/dr measured $E_r \sim v_{tor} \cdot B_{pol}$ fullfills condition for turbulence suppression

q-profile and transport barrier positions are directly coupled

This dependence is of specific importance because it implies that discharges with a large ratio of $j_{bootstrap}/j_{plasma}$ can develop ITBs.

Q ~ 10 is in agreement with the overall confinement scaling and is reasonably backed by dimensionless scaling and theory-based transport modelling

Predictions for pedestal temperature (for Q =10, T = 3 - 4 keV necessary): 2.7 keV => $4 \le Q \le 10$ 5.6 keV => $Q \ge 10$ Discrepancy: due to different "stiffness" in the models

P_{fus} depends sensitively

on density profile

in case of an inward convective term: on He recycling

 P_{fus} has a sensitive dependence on B: $P_{fus} \sim B^{3.5}$

The hope for ITER

Material used and papers consulted from

Chapter 2: Plasma confinement and transport; E.J. Doyle et al. NF 47 (2007)

- R. Budny
- D. Campbell
- X. Garbet
- O. Gruber
- K. Lackner
- V. Mukhovatov
- A. G. Peters
- F. Ryter
- R. Stambaugh

others