

Erosion Processes due to energetic particlesurface interaction

Klaus Schmid

- Introduction
- Physical sputtering
- Chemical erosion
- Chemical sputtering
- Radiation enhanced sublimation
- Impact of impurities on fusion plasmas

Introduction

Introduction

?Surface temperature?Incident particle flux?Incident particle energy?Incident flux compositions

Need control over these parameters

K. Schmid 2009

Introduction

erosion of target materials with $j < 10^{19} \text{ m}^{-2} \text{s}^{-1}$, 100 eV < E < keV

detection of erosion products by mass spectrometry or weight loss measurements

Molecular Dynamics simulation of 50eV He \rightarrow Be

- Energetic particle impact involves a complex collision cascade during which:
 - The projectile <u>may</u> be reflected back out of the surface
 - ➤The projectile <u>may</u> remain in the surface (=implantation)
 - Surface atoms <u>may</u> be ejected out from the surface (= physical sputtering)
 - ➤The surface <u>may</u> be left with crystal damage.

Energetic particle impact is a stochastic process and is therefore described by giving average yields for the different processes

K. Schmid 2009

- Physical sputtering is the kinetic ejection of surface atoms by incident energetic ions or atoms due to collision processes.
- As surface atoms can escape only if it receives an energy larger than the surface binding energy, a threshold energy for the incident particles is required.
- In fusion application physical sputtering by hydrogen ions and atoms is important, but also the self-sputtering due to returning impurity atoms.

 TRIM Monte-Carlo Code simulation

Heavy ions:

- large collision cascade
- isotropic velocity distribution
- yield proportional to energy deposited in first two layers

Light ions:

- few collisions
- energy transfer in single collision
- Momentum inversion in two or more collisions
- Sputtering occurs mostly by reflected particles

$$\mathbf{T} = \mathbf{E}_0 \frac{\mathbf{M}_1 \mathbf{M}_2}{\left(\mathbf{M}_1 + \mathbf{M}_2\right)^2} \cos^2 \delta$$

K. Schmid 2009

stopping power Approximations Ε-ΔΕ become questionable → ∆s∢ 1 0.8 H⁺ → Si 0.6 0.4 S(E_i) (10⁻¹⁴ eVcm²) 0.2 0 \rightarrow Si 4 s 3 2 1 0 10⁰ 10¹ 10³ 10² 104 E_i/eV W. Möller PSE 2002 Tutorial K. Schmid 2009

Stopping Power	$B = -\frac{dE}{ds} = \frac{dE}{s}$	E Energy s Pathlength
Stopping Cross Section	$S = -\frac{1}{n}\frac{dE}{ds}$	$n = \frac{\rho L}{m_2}$ Atomic Density
Interaction with ""Nuclei") and Fl	Target Atoms ectrons:	$S = S_n + S_e$

Stopping power is velocity dependent

- ➢Fast particles stopping dominated by S_e
- Slow particles stopping dominated by S_n

Probabilty dw for a scattering event with a scattering angle θ +/- $d\theta$

 $dw = N_A \, d\sigma(\theta) = N_A \, 2 \, \pi \, b \, db$

N_A areal density of scattering centers (i.e atoms) $d\sigma/d\Omega (\theta) \propto \frac{Z_1 Z_2}{E^2 Sin(\theta)^4}$

- Projectiles and recoil atoms loose energy in elastic collisions (nuclear stopping) and collisions with electrons (inelastic stopping)
- Nuclear stopping decreases for high energies. (E⁻² dependence of scattering cross section)
- Nuclear stopping increases for low energies. (Overcomes screening of coulomb potential)
- Nuclear stopping can be calculated for a given interaction potential (screened coulomb):

$$S_{n}(\varepsilon) = \frac{0.5 \ln(1 + 1.2288\varepsilon)}{\varepsilon + 0.1728\sqrt{\varepsilon} + 0.008\varepsilon^{0.1504}}$$
$$\varepsilon = E_{0} \frac{M_{2}}{M_{1} + M_{2}} \frac{a_{Bohr}}{Z_{1}Z_{2}e^{2}} = \frac{E_{0}}{E_{TF}}$$

- Light ion sputtering in fusion application is dominated by threshold effects
- Energy loss by nuclear stopping alone does not explain physical sputtering.

Ansatz: (P. Sigmund (1969))

Sputtering yield proportional to the energy deposited into collisions near the surface

$$Y(\epsilon) \alpha S_n(\epsilon)_{x=0}/E_s$$

$$Y(\varepsilon) = Q(M_1, M_2, E_S)^* f_H(\varepsilon)$$

 $E_s = Surface binding energy \cong \Delta H$ heat of sublimation

K. Schmid 2009

- In the threshold regime all experimental data show a similar energy dependence
- normalized energy scale
 E' = E/E_{th}
- Good fit to universal function with

 $Y(E') = Q(M1, M2, E_s) * f(E')$ $f(E') = (1 - \frac{1}{E'})^{3.5}$

Systematics for light ions

- No dependence of E_{th} on target mass, but on surface binding energy E_s
- Strong dependence of yield on mass in isotropic cascade regime due to nuclear deposited energy.
- Most important is the yield range close to unity, as runaway impurity production may occur

$$\Gamma_{Ero} = \Gamma_D Y_D + \Gamma_{Ero} Y_{self}$$

$$\Rightarrow \frac{\Gamma_{Ero}}{\Gamma_D} \equiv Y_{eff} = \frac{Y_D}{(1 - Y_{self})}$$

K. Schmid 2009

J. Roth, W. Eckstein et al., J. Nucl. Mater. 179-181, 34 (1991)

J. Roth, E. Vietzke, A.A. Haasz; Atomic and Plasma-Material Interaction Data for Fusion, Suppl. to Nuclear Fusion **1** (1991) 63. C. Garcia-Rosales, W. Eckstein, J. Roth; J. Nucl. Mater. **218** (1994) 8-17.

- Physical sputtering is the *kinetic ejection of surface atoms* by incident energetic ions or atoms *due to collision processes* (playing pool with surface atoms).
- As surface atoms can escape only if it receives an energy larger than the *surface binding energy*, a threshold energy for the incident particles is required.
- In fusion application sputtering by hydrogen and helium ions and atoms is important, but also the self-sputtering due to returning impurity atoms.

Chemical Erosion

- Chemical erosion originates from the formation and release of volatile molecules in the interaction of incident plasma particles and target atoms.
- In fusion application the formation of hydrocarbons in the interaction of hydrogen atoms with carbon surfaces is the dominant example of chemical erosion
- As chemical reactions are involved, chemical erosion shows a strong temperature dependence in contrast to physical sputtering.
- Chemical erosion is due to interaction of thermal atoms and does not require a threshold energy.

Chemical erosion at room temperature

- threshold behaviour for Be, W
- advantage for high-Z materials
- no threshold for C
 - \Rightarrow what is different?
 - ⇒ chemical reactions between D and C forming volatile hydrocarbons

chemical erosion

microscopic model for erosion of graphite by H_0

Hydration and erosion circle:

Horn et al., Chem. Phys. Lett. 231, 193 (1994) Zecho et alJ. Phys. Chem. B 105 (2001).

- 1) chemisorption of H on sp² site
- 2) chemisorption of H on sp^x site (hydration)
- 3) abstraction of H to form H_2
- 4 a) thermal release of CH_3 radicals from activated sites above 400 K
- 4 b) chemisorption of H on sp^x site
- 5) relaxation back to sp² above 750 K
- 6) direct thermal decomposition to sp^2 above 900 K with E_{act} =2.4 eV

Hydration and erosion circle:

Horn et al., Chem. Phys. Lett. 231, 193 (1994) Zecho et alJ. Phys. Chem. B 105 (2001).

- hydration at room temperature of more than 90% of all possible adsorption sites
- erosion maximum as function of temperature

Chemical Erosion at elevated temperatures

- "Basic" understanding and modeling of chemical erosion
- First modeling attempts using MD codes
- ? Shift of erosion maximum with energy. (Different erosion products)
- ? Flux dependence of chemical erosion

chemical erosion

- chemical erosion originates from the formation and release of volatile molecules in the interaction of incident plasma particles and target atoms.
- in fusion application the formation of hydrocarbons in the interaction of hydrogen atoms with carbon surfaces is the dominant example of chemical erosion.
- as chemical reactions are involved, chemical erosion shows a strong temperature dependence in contrast to physical sputtering.
- chemical erosion can occur with low-energy ions or thermal atoms and does not require a threshold energy.
- erosion will only take place at the very surface (1.4 nm pentration depth) or at the end of range of energetic particles.

- <u>Chemical Sputtering</u> is a process whereby *ion bombardment causes or allows a chemical reaction to occur* which produces a particle that is weakly bound to the surface and hence easily desorbs in the gas phase.
- Bombardment of carbon by hydrogen ions
- Bombardment of carbon by noble gas ions in the presence of atomic hydrogen
- Bombardment of carbon by noble gas ions in the presence of molecular oxygen (or water)
- Etching of silicon by fluorine plasmas (this is by far the most important industrial plasma process)

it is not chemical erosion H^0 at T > 400 K with a max. at ≈ 650 K - 800 K

it is not physical sputtering energetic ions $E > E_{th}$, no chemistry

but its chemical sputtering hydrogen ions, low-T, low-E

Data: M. Balden and J. Roth, J. Nucl. Mater. 280 (2000) 39-44

Erosion of a-C:H layers

```
Comparison of simple physical
sputtering (blue symbols) due to
Ar ions
with
erosion due to simultaneous
```

```
interaction of H and Ar<sup>+</sup> (green symbols).
```

Simultaneous interaction leads to:

- Erosion even below threshold for physical sputtering (threshold energy for physical sputtering ≈ 60 eV)
- Enhanced erosion above 200 eV
- Erosion at 20 eV → pure chemical erosion
 ⇒ 'chemical sputtering'

Temperature dependence

K. Schmid 2009

• Chemical Sputtering is a process whereby *ion bombardment causes or allows a chemical reaction to occur* which produces a particle that is weakly bound to the surface and hence easily desorbs in the gas phase.

- As for chemical erosion a basic model exists but there are still open questions:
 - temperature dependence of the erosion maximum not understood
 - decrease in erosion rate at high fluxes not under stood

Radiation enhanced sublimation

 At high temperatures graphite exhibits an exponential increase in the erosion rate during energetic particle impact that can not be explained by sublimation

☆carbon self sputtering

around 1000 K onset of enhanced sputtering

K. Schmid 2009

K. Schmid, J. Roth, J. Nucl. Mater. **313-316**, 302 (2003)

Radiation enhanced sublimation

Exponential fits yield activation energies

TEMPERATURE T (K)

- Arrhenius activation energies are well below the graphite sublimation energy.
- Process occurs for both inert and reactive sputtering species
- Experiments indicate that eroded species have thermal energies

IPP

RES mechanism

- Energetic ion bombardment generates vacancy/interstitial pairs (Frenkel pairs)
- vacancies & interstitials are highly mobile (diffusion) at elevated temperatures slower
- Interstitials annihilate with vacancies and at the surface where they can sublime
- · Vacancies annihilate with Interstitials and at the surface

≻Diffusion trapping model describes RES:

$$\frac{\partial C_{i}}{\partial t} = D_{i} \frac{\partial^{2} C_{i}}{\partial^{2} x} - \underbrace{D_{i} a N C_{i} C_{v}}_{Annihilation} + \underbrace{\Phi_{D}}_{Source}$$

$$\frac{\partial C_{v}}{\partial t} = Dv \frac{\partial^{2} Cv}{\partial^{2} x} - \underbrace{D_{v} a N C_{v} C_{i}}_{Annihilation} - D_{v} a N C_{v}^{2} + \underbrace{\Phi_{D}}_{Source}$$

► Net RES erosion flux is given by the diffusive flux of interstitials to the surface $\Gamma_{\text{Res}} = D_i \frac{\partial C_i}{\partial x}$ K. Schmid 2009

Radiation enhanced sublimation

- Diffusion trapping model quantitatively describes RES
- Damage profile calculated by TRIM.
- Under fusion conditions the influence of RES is not very pronounced:
 - At high fluxes the vacancy concentration becomes very high leading to fast annihilation of the more mobile interstitials.
 - ➢For low particle energies close to the damage threshold no Frenkel pairs are created.

Radiation enhanced sublimation

- At high temperatures graphite exhibits an exponential increase in the erosion rate during energetic particle impact that can not be explained by sublimation
- A model using the sublimation of weakly bonded surface defects, quantitatively describe the process.

 Similar effects are also seen for metallic targets at very high fluxes and temperatures. ← more relevant for fusion.

- As atoms are eroded from the first wall they enter the plasma
- In the plasma they are ionized and transported throughout the machine.
- What how does that affect the plasma?

In 1957 Lawson introduced power balances:

Break-even: the fusion power equals the loss by radiation, and by transport (diffusion, convection, charge-exchange):

 $P_{fus} = n_D \cdot n_T \cdot \langle \sigma \cdot v \rangle \cdot E_{fus}$

$$P_{\text{bremsstrahlung}} = c_1 \cdot n_e^2 \cdot Z_{\text{eff}} \cdot (kT)^{1/2} + P_{\text{loss}} = 3 \text{ n kT} / \tau_E$$

where E_{fus} is the α particle heating, $c_1 = 5.4 \cdot 10^{-37}$ Wm³keV^{-1/2}, and $Z_{eff} = \Sigma f_i Z_i^2$ is the effective plasma charge

with $n_D = n_T = n/2$, and $T_i = T_e = T$ we find a condition for the fusion product $n\tau T$:

n τ T = $\frac{12 (kT)^2}{(s_{o} \cdot v) + E_{fus} - 4 c_1 Z_{eff} (kT)^{1/2}}$

Ignition Criteria

• Ignition: The neutrons leave the plasma, the α -particles are confined and heat it. Only their energy should enter the balance! $E_{fus} \rightarrow E_{\alpha}$ 23 $Z_{eff} = 1$ $Z_{eff} = 3$ [m⁻³ s keV] 22 "Ignition" log n∙τ∙T 21 "Break-even" 20 100 10 T_i [keV]

• The α -particles also dilute the plasma, as they are intrinsically coupled to fusion power (3.53•10¹¹ atoms/s/W).

For steady state conditions, power and particle balances have to be solved simultaneously . → closed curves, parameterized by the He-confinement time

$$\rho_{\text{He}} \, \alpha \, \tau^{*}_{\text{ He}} / \, \tau_{\text{E}}$$

 $\tau^*_{\mbox{ He}}$ global particle confinement time

 τ_{E} energy confinement time

here: $Z_{eff} = 1$ (no other impurities)

D. Reiter et al. Nuclear Fusion 30 (10), 2141 (1990).

Material selection for ITER

- Main chamber first wall Inevitably erosion by CX-neutral impact Low particle flux and power load Minimize radiation losses
- ✤ Beryllium
- Divertor wall Particle energy < 200 eV Medium particle flux and power load Use high sputtering threshold
- ✤ Tungsten
- Target plates
 - Particle energy < 100 eV High particle flux and power load Extremely high transient power load No surface melting
- Carbon CFC

- As atoms are eroded from the first wall they enter the plasma
- In the plasma they are ionized and transported throughout the machine.
- In the plasma they radiate energy through line radiation and Bremsstrahlung.
- They also dilute the plasma.
- The radiative loss of energy from the plasma and its dilution through these impurities has fundamental implications for the operation of a fusion reactor!
- The erosion of wall components poses a lifetime problem
- The co-deposition of impurities (mainly C) with fuel ions poses a radiation hazard