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Outline

• Motivation

• The volume penalization method for fixed (and moving) obstacles

• Analysis of the penalized Laplace operator

• 1d example for Dirichlet and Neumann boundary conditions

• Applications to fluid turbulence (Navier-Stokes eq.) :

• 2d confined turbulence, flapping wings in 3d

• Application to passive scalars (turbulent mixing) 

• Applications to plasma turbulence (Navier-Stokes + Maxwell eq.)

• Spontanuous rotation in toroidally confined MHD

• Effect of toroidicity in RFP dynamics

• Conclusions



Context: Immersed boundary methods
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Physically motivated mathematical model

• Solid moving wings
• Viscous incompressible fluid
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E. Arquis and J.P. Caltagirone, 1984. 

C. R. Acad. Sci. Paris, II

physically motivated

• Mathematically justified

Volume penalization method is

P. Angot, C.H. Bruneau and P. Fabrie, 1999. 

Numer. Math. 81

Penalized equation:
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• Easy-to-implement

G. Carbou and P. Fabrie, 2003.

Adv. Diff. Equations 8

us – pointwise velocity of the solid

uc – velocity of the center of the solid
Vc – volume of the solid
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K. Schneider, 2005. Comput. Fluids 34



Initial Boundary Value Problem
In complex geometry
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(Plus initial conditions)

with L being, e.g. the Laplace operator, or Navier-Stokes or Maxwell operator



Penalized problem in simple geometry
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Discretized penalized problem
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Some analysis: a simple example
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Exact solution of the penalized 
1d Poisson equation
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Penalization term



Exact solution of the penalized 

1d Poisson equation (3)

Exact penalized solution (left) for m=2 and its first (center) and 

second (right) derivatives.
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Penalization error of the Dirichlet problem

Using the exact solution of the penalized problem the leading 

order L² error with respect to the Dirichlet problem is given by

where the   behavior is consistent with previous studies

by Angot et al., 1999 and Carbou and Fabrie, 2003.
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Discretization error of the penalized equation

The penalized problem is discretized with a pseudospectral Fourier

method using N grid points. For the L² error between the discrete 

solution and the exact solution of the penalized problem we get,

where K=2 for m even and K  3.84 for m odd.

The N-2 behavior is related to the regularity the exact 

penalized solution as observed by Min & Gottlieb 2003 

for elliptic equations with discontinuous coefficients.
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How to choose ?

Combining the two estimates we get a bound for the total error e

between the discrete-penalized solution and the exact solution

of the Dirichlet problem:

which suggests that the penalization method with Fourier 

discretization is a first order method.

When  is chosen with the right order of magnitude, i.e.  1/N,

in order to optimize the preceding estimate, then the resulting error is
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Convergence of the Fourier collocation method

Error with respect to the exact Dirichlet solution in the interior of  

the fluid domain (left) and with respect to the penalized solution

in the whole domain (right).
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Penal. + discret. error Discret. error
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The volume penalization method 

for fixed (and moving) obstacles

Navier-Stokes equations
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Two- and three-dimensional formulations

Two-dimensional model:
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Three-dimensional model:
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Numerical method

• Pseudo-spectral Fourier 

discretization in space

(periodic boundary conditions)

Fast Fourier Transform

• Exact integration of the viscous term 

(method of integrating factors)

• Adaptive 2nd order Adams-Bashforth 

time-stepping scheme
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Ref.: K. Schneider, 2005. Comput. Fluids 34

D. Kolomenskiy and K. Schneider, 2009. J. Comput. Phys. 228
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Application to

2d confined turbulence
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2d decaying turbulence in a circular domain

Ref.: K. Schneider and M. Farge, Phys. Rev. Lett., 95(24), 2005

Vorticity,

N=10242
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Flapping wings:‘Realistic’ planform and kinematics

www.vapor.ucar.edu 

Ref.: D. Kolomenskiy, H.K. Moffatt, M. Farge, K. Schneider. J. Fluids Struc., 2011 
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Penalization for

Fluid structure interaction: flexible beam
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Vorticity, Re=200, =10-3 (chaotic state)

Ref.: Th. Engels, D. Kolomenskiy, K. Schneider and J. Sesterhenn, Comput. & Struc. 122, 2013. 
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‘Swimming’ flapping flexible foil

Simulations by Thomas Engels. 

‘Insect flight’ 



Neumann boundary conditions (I)

As simple example we consider the Poisson equation,

with homogeneous Neumann boundary conditions

and for

The exact solution is                                         where C is a constant.

The penalized equation reads

with the penalization parameter  is and the mask function

Periodic boundary conditions are imposed. 30



Neumann boundary conditions (II)

The exact solution of the penalized problem is

where 3 of the 4 coefficients can be determined by imposing 

continuity of the solution and of the flux.

The Fourier coefficients of v

decay like k-2 and there is 

no boundary layer!

For details:
D. Kolomenskiy, R. Nguyen van yen, K.S.,

arXiv:1403.5948,  Applied Numerical

Mathematics, in press, 2014
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Neumann boundary conditions (III)

Advection-diffusion equation of a passive scalar,

and

,

The penalization term models the

Ref.: B. Kadoch, D. Kolomenskiy, P. Angot, and K.  Schneider, J. Comput. Phys., 231, 201232

The numerical method is a Fourier pseudo-

spectral method, resolution 10242.



Passive scalar mixing
Vorticity

Scalar field

B. Kadoch, D. Kolomenskiy, P. Angot, 

K.  Schneider, JCP, 231, 2012

33



34

The volume penalization method 

for MHD equations
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Application to 

Spontanuous rotation in toroidally confined MHD 

Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Phys. Rev. Lett., 109 , 2012.
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The volume penalization method

How do we solve the equations?

Fourier pseudo-spectral method with semi-implicit time stepping.
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Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Phys. Rev. Lett., 109 , 2012.
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Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Phys. Rev. Lett., 109 , 2012.
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Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Phys. Rev. Lett., 109 , 2012.
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Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Phys. Rev. Lett., 109 , 2012.
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Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Phys. Rev. Lett., 109 , 2012.
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Application to

Effect of toroidicity in RFP dynamics

Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Plasma Phys. Control. Fusion, 56 , 2014.
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RFP in toroidal and cylinder geometry

Pinch ratio           :  
wall averaged poloidal mag. field / volume averaged toroidal mag. field
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RFP dynamics (torus)

pinch ratio

ratio of kinetic energy
of the dominant
toroidal mode over
tot. kin. energy

Toroidal velocity
isosurfaces
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RFP dynamics (cylinder)

Axial velocity
isosurfaces

ratio of kinetic energy
of the dominant
axial mode over
tot. kin. energy

pinch ratio
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Conclusions: RFP dynamics

Ref.: J. Morales, W. Bos, K. Schneider and D. Montgomery, Plasma Phys. Control. Fusion, 56 , 2014.

• Influence of curvature of the imposed magnetic field on Reversed Field  Pinch 
dynamics was investigated.

• Comparison of a toroidal with a periodic cylindrical geometry. 

• Axisymmetric toroidal mode is always present in the toroidal, but absent in the 
cylindrical configuration. 

• Toroidal case presents a double poloidal recirculation cell with a shear localized 
at the plasma edge.

• Quasi-single-helicity states more persistent in toroidal than in the periodic 
cylinder .



Conclusions
• Volume penalization to model fluid and plasma flows in complex (time varying) 

geometries. 

• Simple 1d examples for the penalized Laplace with Dirichlet or Neumann 

boundary conditions.

• Optimal penalization parameter opti is of order N-2

• The finest resolved scale should be of O(1/2)

• Cancellation of penalization and discretization errors. 

• Applications to 2d confined fluid turbulence, fluid-structure interaction, …

• Application to plasma turbulence:

• Spontaneous spin-up in toroidal geometries

• Effect of toroidicity in RFP devices.

Some Theory:

Ref.: R. Nguyen van yen, D. Kolomenskiy, K. Schneider, Numerische Mathematik, 

in press, 2014 and Appl. Num. Math., in press, 2014

www.cmi.univ-mrs.fr/~kschneid
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