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Objectives of Talk

e Learn some control terminology

* Develop some intuition about control concepts

- Details occasionally (and intentionally) omitted

* Understand the multiple objectives of contirol




Model-Based Control Design Process

. Make system model

. Verify model predicts behavior of system
Design controller

Test using models in closed-loop simulation
Implement and test implementation
Deploy in operation

o0 s N =

e Using only 5-6 is feasible and often successful - why do steps 1-4?
— Requires empirical tuning, cost = $50,000 - $100,000 per day on present devices
— Performance:
— Large systems (many inputs / outputs) difficult to tune properly for best control
— Nonlinear systems require retuning over many equilibrium states.

— Evenif Steps 5-6 is chosen approach, studying models is useful to understand how
control affects system

— Next Generation devices (e.g. ITER) will not allow empirical tuning




Infroduction to System Representation - Block Diagrams

* A Block Diagram consists of two parts:
— Signals (arrows in diagram)
— Operations (blocks in diagram)

* Example (poloidal field system producing plasma shape)

Shape & Position
Power Supply POWCI‘ V Plasma / B ,’lp ContrOI Parameters
> > > arameter >
Commands Supply conductors p ] X point R.Z
transformation (e.g. gaps, X point R,.Z)

B TR

* Equivalently, hiding all details:

Power Supply | Shape Control | Shape & Position
> » Parameters

Commands g System ) -2
(e.g. gaps, X point R,Z)

Z(m)
> > > > >
CS Coils
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System Representation — Ordinary Differential EqQuations

u(t) y(0)

* State Space Models T LSStem T s X veseetcondicion
~ General (xisstate”): ¥ =S(xu0) 3 [XIPF2
y = g(x,u.t) ITER
— Note ordinary differential equation (ODE) is 15" order ! PF3 K
— Linear, time-invariant (LTl) system: 2 1

x(1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

<1<
CS Coils

— Example (plasma + conductors): PFa [X
d((SI) d((S[)/dt = A(SI-I_ Bv - PFcoil |
M*7+R(SI=U(SV — y=CI . duct
PF5
y=CI (A=-M'R, B=M]'U) L [pre

8 10 12

N
E-N
(=1}

— I{t) = toroidal conductor currents (perturbations 8l from equilibrium < states x);
M.=mutual inductance matrix (modified by plasma response), R=resistance matrix

— y(t) = coil currents, flux and field in vacuum region; C=green functions

— Vv(t) = input voltage from power supplies (dv from equilibrium); U = ones for coils,
zeros for vessel conductors




System Representation - Laplace Transform

* Definition: For a given function f(t) with f(0)=0, Laplace transform of f is: Ao

Fs)=L{fn}=[ 0°°e'“ f(t)dt, S=0+ jw
o
* Nice properties: 5 < >
a|_ afl_o
£{ dt}_SF(S)’ £{ % }—s F(s), ..etc..
t 1 v
L{f o/ (T)dt} B ;F (s) complex ("s") plane
* For an example of how it's used, apply to : ("frequency domain")
x(t) = Ax(t) + Bu(t) sX(s) = AX(s) + BU(s)

YO =Cx()+Du(t) . Y(s) = CX(s)+ DU(s)

sX(s) = AX(s)+ BU(s) = (sI- A)X(s)=BU(s) = X(s)=(sI- A)"'BU(s)

Y(s)=CX(s)+ DU(s)
= C(s1- A)'BU(s)+ DU(s) = Y(s)=(C(sI-A)"'B+D)U(s)




System Representation - Transfer Functions

Transfer Function = ratio of Laplace Transforms of (scalar) output and input signails: YLS)

U(s)
Example (simple mechanical system; x is displacement):
) . X(s) 1
mx(t) + dx(t) + kx(1) = u(t) = (ms*+ds+k)X(s)=U(s) = =
(1) + dx(t) + kx(1) = u(t) = ( )X (s) =U(s) U~ (ms’ +ds+ )

Example (lowpass RC filter):

—/\V\W V1

Vin R C == Vout V. (s)  RCs+1
General LTl case, from previous page: Y(s) = (C(SI ~A)'B+ D)U (s)
If Y, U are scalars: % — (C(sI ~A)'B+ D) (Single-Input-Single Output (SISO) system)

S

If Multi-Input-Multi-Output (MIMO) system, each element in matrix C(sI-A)"'B+D
is a scalar transfer function, so still called "transfer function"




System Representation - Equivalent Representations

e Block Diagram State Space (15' order ODE) Transfer Function
m 0| d|v d kllv u
folrlce mechanical disglaiement 0 1 E X + 1 ollx = 0 Y(s) 1
system =
M+ di + kot = u y U(s) (ms’+ds+k)
y = [0 1]
X
: : 1 1
Vin RC | Vout V (H==—V (H+—V. (¢ V., (8) _ 1
—_—> filter > out( ) RC Out( ) RC m( ) V (S) = RCS_I_I
y(1) = Vour(t) N
PS Shape Shape x(t) = Ax(t) + Bu(t)

Y(s) =(C(s1- A)'B+D)U(s)

Control [==>
Comniand?| System Parameters y(t) = Cx(t) + Du(t)




System Representation - Feedforward/Feedback

Open-Loop Control
shape Feedforward com Power \Y Plasma / By X Control shape
request Controller | Supply “| conductors g paramet'er params
calculation
Closed-Loop Control
shape + _error | Feedback |com | Power ‘ Plasma / By Control shape
request E‘ E. _ Controller | Supply | conductors i paramet'er parz:lms
calculation
Combined [ recdforward
| Controller
shape + . error | Feedback ++'.'\ com Power \Y ‘ Plasma / By X Control shape
request g Controller 2 Supply “| conductors q|  [PEmIEET par:ams
- calculation
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Analysis of Dynamics (Time Dependent Behavior)

What is undriven "natural” behavior of system?
(1) = Ax(0)+ B()
Defined by the eigenvalues 4 :
Ax = Ax n

An arbitrary vector v can be expressed as sum of eigenvectors: v = Eakxk
k=1

n n n n
Then: Av-= EakAxk = Eakkkxk = X = Eakxk = Eak)ukxk
el ol ol P complex-plane

* That is, we can analyze as n scalar ODE's: @.- O.+ jo)
i, =Ax, = x, (1) =e"x, (0) e
* To determine stability of the system: stable A
o, =real(A) <0 = x,(t) =0, t =0 (stable) X o
o, =real(A)>0 = x ()=, t = (unstable) < * g
« If ANY eigenvalue has Re(A)>0 => system is UNSTABLE. unstable A
e Otherwise, system is STABLE.




Analysis of Dynamics (Laplace Domain)

y(s) b(s)e complex-plane

Poles and zeros of Transfer Functions: polynomials

= — _ .
— Complex function theory terminology: u(s) als) .wA(S o+ jw)
* Roots of denominator polynomial a(s) = poles J
* Roots of numerator polynomial b(s)= zeros \
\: X o
« If ANY poles have o=Re(s)>0, system is UNSTABLE, hide = * >
» otherwise, STABLE. (Explanation in a moment.)
e Examples: LHP ¥ RHP
V. .(s) 1 .
== = has 1 poles (in LHP) and no zeros => STABLE
V.(s) RCs+1
) _ : has 2 poles (in LHP) and no zeros => STABLE
UGs)  (ms® +ds+k) P
V. _.(s) ~ RCs

(high-pass filter) has 1 pole (in LHP) and 1 zero (at 0)

V,(s) RCs+l => STABLE
LHP/RHP = Left/Right Half Plane




Analysis of Dynamics (Time vs. Laplace Domains)

Eigenvalue is a complex number A satisfying:
— (M -A)x =0 forsome x=0
- © (M-A)" does not exist
—~ < determinant Al - A|=0

Note similarity to portion of Transfer Function:

Y(s) =(C(sI- A)'B+D)U(s)

* In fact,
, 1 _ | X| = determinant of X
(s1-4)" = m Adj(s1-4) Where: Adj(X) = adjugateof X (matrix of cofactors)
A common situation is D=0, so that the transfer function is:

matrix of

# CAdj(sI- A)B polynomials in s
polynomialin s

That is, the POLES of the transfer function = roots of determinant of (sl-A)
= EIGENVALUES of A




Understanding System Response — Correspondence
Between Eigenvalue (Pole) Location and Time Response

X, =Ax, = x,(1)=e"x,(0)

! S complex-plane
l o A=s=0+ jw)




Understanding System Response - Frequency Response

* Recall Laplace Transform definition: s=0+jo MY
F(s)= L{f (0} = [, " f(nyds
e Restrict to jo axis obtains Fourier Transform if f(1<0)=0 : < o

F(jw)=F{f@}=[ e ™ f(n)dr
For a system with transfer function Y(s)/U(s),
Y(jo) _ s (jw)\ej."’ha“(y ”f"” v
U(](U) ‘U(jw)‘eJ'Phase(U(Jw))
System Gain is defined to be | Y(jw)/U(jw) | gain

VAN —
System Delays: Two types:

— Phase lag = frequency dependent time delay

lag = phase(Y(jw)) — phase(U(jw)) W W

low frequency = small delay, high frequency = large delay

pure —— -

— Pure delay = frequency independent time delay delay |




Understanding System Response — Bode Plots of

Frequency Response

* Examples:
Vuus) 1 V()  RCs
V.(s) RCs+1 V.(s) RCs+1
Lowpass filter Highpass filter

Giiwzhnws=0rﬂ N
"L gain voll-of /. Gain(s=0)=0

R R L F TR A R E 1T R S A S ST TR R A AT ol S T S T
107" 1P 10' 1 16° 1d* 107" 1d 10' 1R 16° 1d*

~_phaselag
rd I B

> o
T 60f SRS
© RN
@ a0f- e o
e N
o

» Phase lead

phase (deg)

L M | i M| L P | L N | ! Lo O L Lol L M | ; ! "‘H:i H n ; — : s
107" 10 10 107 100 1d* 107" 10 10' 16 100 16t
Frequency (Hz) Frequency (Hz)

NOTE: Bode gain plot is ratio of powers (20log,,(amplitude ratio)).




Objectives of Control — Tracking and Regulation

Control plasma major radius:
- Assume plasma current (1) is positive ZA B
- Radial hoop force F; pushes plasma outward

- Vertical field (B,) produced by outer coils
holds it in desired location (regulation) ...

- ... or moves plasma in/out to match a time-
dependent request (tracking)

tokamak positive current sign
convention (viewed from above

’,
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Objectives of Control — Tracking and Regulation

. I
* Control plasma elongation: @ upper
- Increasing elongation (k) has been shown
A

to improve performance, so we want to

conftrol: B
b Z /
= I
“ i@y
- Control accomplished by "pulling" on top a >R
and bottom of plasma
- However, elongating plasma introduces

moment)

destabilizing field curvature (explained in a V\ @ 1)

liower




Objectives of Control — Tracking and Regulation

e Derivation of Closed-Loop Transfer Function:

r(s) | p(s) p(s) = G(K(s)(r(s) - p(s))
cIror commands
a1 K(s) 1 G(S) Fotoiea I +GOK($)p(s) = GK()r(s)
params\[ Feedback Controller Cont1rz)llll(:lcll1 tS)ystem params D (S) ) G (S) K (S)
| r(s) (I+G(s)K(s))
* What we want:
Open-Loop o177 smallathigh
c 7 largeatlow  \Jrequencies
Transfer G(s)K(s) 5 :qrge atlow — N Tl
. = frequencies
Function RN
K A S S
o ————————~  '~0athigh-
(leose(} Loop  Gk(s) €= ~<1in | N\ !frequencies
ransier s | control | N>
. I+ G(s)K(s cof-. COTMIQN.... . N T
Function /T OORED) L pband R
e Y

Frequency (Hz)




Objectives of Control - Stabilization

Open-loop instability: FEEDBACK < applied
Aforce
et
applied }\
force /
* Plasma vertical instability (caused

by destabilizing curvature):
FEEDBACK @ feotbch
Z A
Z Motion Feedback-

Applied
Response

Anti-symmetric coils
provide radial field to
apply force that opposes

e 'Ifeedback
plasma vertical motion




Objectives of Control — Avoid Closed Loop Instability

e Gain cannot be considered
independently from phase.

e Ifgain>1 ... 5 i

-100
—~ =120
[+

* ... when phase = -180 (opposite sign)

e => positive-feedback at that frequency 1
and result is control-driven instability... ‘°2 Froquency (H2)
T A joo

... and closed-loop
transfer function has
pair of poles in RHP

control pushes too hard

!

system "overshoots" T

\
<€ >

5+

control pushes too hard




Objectives of Control — Closed Loop Stability

* Need ’ro con5|der both galn AND phase:

20

20} Iarge at Iow E

< » small at high

<:| Previous gain K reduced to achieve
N frequenmes positive gain and phase margins.

oy He N,
‘8"";22 'l';.l'lzi TN T ‘ !
-100- - o SR 1 S o S I ) S g
B T Y - i
Frequency (Hz) %‘ : : : : S
R e R
8 ! chn mqrgln T
10F 1 b : e
Pay attention to stability B ! !
(phase) in the middle ——> @ ! l 10’
-100 : : :
e Need gqin << for phqse:-]goo 20~y ]
* Need phase lag << 180° for gain >1 {2
§—180—————— _______I .l
) ) ..[Phase margin
(Gain/Phase margins are one | S
oge ° -220 > ! i ; i ; ; ; \
example of stability margins.) 10 10

Frequency (Hz)




Objectives of Control — Disturbance & Noise Rejection

error: €(S) \Y% disturbanlce: dV(S) B,y distilrbance: dB(S)
com + + S
o 1= Pe ke o i cw He
+ + shape params
Controller Power Supply  Plasma/conductors calc control params
++:n0ise: n(s)

et
Disturbance rejection means ratio of norms of errors to input is smali:
Jecs)l leCs)]
<<1, <<
LAC I RO
Noise rejection means ratio of norms of errors to input noise is smaill:
leCs)l
<<
O

These are ensured by making norms of transfer functions small, e.g.:

leCs)| _ H‘(” CTPK)*CTH <1

1 (attenuate effect of disturbances)

1 (attenuate effect of noise)

|, (5
For example, large gains in controller K can make this small.




Performance Requirements - Time Domain

* Typical Specifications on Step Response:
— Rise Time < X seconds
— Percent Overshoot <Y %
— Settling Time < Z seconds (within ¢ %)

overshoot | /~ oo/ __2C. iy

1 1
rise time




Performance Requirements - Stability

controlled

params

unstable

e Consider plant I'(S) 4+ _ error commands 2e8 p(?)
used in Bode  requested§ _ K 1 s* +2100 s* +2.2e6 s +2¢8
p| ols: params Feedback Controller Plant
e Root Locus 1500 open-loop :
diagram shows i i _
stability changes - poles (x) K=10 poles =>
with K: g stable closed loop
- Open-loop g ,,,,,,,,,,,,,,,,,
stable plant g’ X x
- Stable closed | Increasing gain
IJJOF:' ;:10 1000} . K =>eventually
- clr:sg q Ieoop, .| Root Locus \
K=200 Diagram (in s-plane) : ‘
-20-.&00 -1500 -1000 -500 0 500

Real Axis




System Representation - Sampled Data Systems

* Modern plasma control mixes discrete- and continuous-time systems:

I}OTE continuous time (analog) system
r(s) + p(s)
=Y tp k@S DA ] Ps) — Ts) ] ces) :
) Controller Power Plasma/ control l
Supply conductors params D
discrete time (digital) system

e Approach (1) to Control Design:

— Treat entire system as continuous time. Develop continuous controller K(s),
then convert to discrete controller K(z).

— Issues: Close to original physics models, but sampling rate must be fast
enough to justify tfreating discrete controller as continuous.
e Approach (2) to Control Design:

— Treat entire system as discrete and develop discrete controller directly.
(Methods exist to convert mixed continous/discrete to all discrete system.)

— Issues: Direct production of discrete conftroller with given sample rate, but
difficult to retain physical intuition.

IONAL FUSIO FACITY




System Representation — Discrete Time Systems

Time now represented by integers k=1,2,... (i.e., time = sample number)
_’u(k) System —Lk)

State-Space models are difference equations:
x(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
Now we have Z-transform instead of Laplace transform

F(z)=Z{f()}y = fk)z™

Nice properties:

w0 [Teampre | YOO=EG-D)
U(z)=F(2) delay Y(2)=2'F(z) complex-plane Ajn
e Transfer functions now defined on "z"-plane: (z=&+jn)
X(2) = AX(2) + BU(2) w N
Y(z) =CX(2)+DU(2) »
= Y(2) = C((zf - A)'BU(2)) + DU(2) — stable pole

unstable pole v




Controllers - Example Digital Implementations

e Simple gain multiplier:
- Command signalu(k) =K *e(k) (error e(k) =r(k) - y(k))
- K can be scalar (SISO) or matrix (MIMO)

° Dig"’d' filter (S'SO) only previous samples

u(k) =au(k -1+ ...+ a u(k —n) N U(z) ~ b, +b1z'1 +..+b 77"
+ boe(k)w— 1‘)+.\+bme§7— m) Ez) 1-az7z'-..-az"

present and previous samples
 State Space:

— Either SISO or MIMO:  u(k) =C_ x_(k =1)+ D_e(k)
x,(k) = A x (k=1)+B.e(k)

- Qutput computed from present error and previous state

- Controller state is updated at each time step




Next - some examples of types of controllers

 Why different controller types?
- Simple versus difficult to use
- SISO versus MIMO system
- Highly coupled versus mostly diagonal system
- How problem is posed (what you "care about")
- Noise characteristics of system
- Disturbance sources/effects and characteristics
- Level of knowledge of system dynamics (model uncertainty)

- Guaranteed stability including uncertainty versus nominal
stability (not accounting for uncertainty)

- Guaranteed performance including uncertainty versus
nominal performance (not accounting for uncertainty)




Controller Types - PID controllers

PID = Proportional, Derivative, Integral feedback
— Ideal: u(r) = Kpe(r) + K (1) + K, [ e(r)dt
— e(t) = error signal, u(t) = command to control actuator
Simple and often all that is needed (DO NOT confuse "often" with "always")

Purpose of each term:
— Kp: Tracking (KeG/(1+KpG) ~ 1 over control bandwidth)
— K;: Regulation (gain is infinite at jw=0 => steady-state error = 0)
- Kp: Damping, phase lead

* Issues:
— Kp:can destabilize if too large (implemented as simple gain multiplier)
— K;: integrator windup (implemented as digital filter)
- Ky:amplifies noise at high frequencies (implemented as digital filter)

* Advantage:

— Simple, tunable

Disadvantage
— Difficult to determine gains in highly coupled systems




Contiroller Types - LQG controllers

LQG= Linear, Quadratic, Gaussian ("optimal control")
— Assume the linear system has Gaussian noise v(1), w(t):  x() = Ax(t) + Bu(t) + v(t)

y(1) = Cx(1) + w(t)
— Minimize objective funchonful J .. J foox(t)T Ox(t) + u(r)” Ru(t)dt
— ... where Q>0, R>0 (quadratic cost) 0

— Typically, states x are variations around a stable equilibrium x,

— Sometimes J has terms for output y or error e = reference - output
Main idea: keep signals small "on average" (variation due to noise)
Optimal controller is given by: () = Ax(t) + Bu(?) + K(y(t) = Cx(1))

u(t) = —Lx(1)

— First equation is the Kalman Filter, which provides an optimal estimate for x

— If state measured directly, insert x in place of x-hat and use 2"9 equation only
Advantage:

— Straightforward to generate conftroller optimal against "noise”, once J is defined
Disadvantage

— Matrices Q and R typically determined through trial and error




Controller Types - H-infinity ("robust") controllers

 H”= method for synthesizing robust controllers ("Hardy space, infinity norm")

* Robust = guaranteed stability/performance with unknown (but bounded)
uncertainty in plant model

— Infinity ("worst case") norm :||Al|, < bound £
< 10
Uncertainty o0 A | | |
o uncertainty band
Ain(s) . A(S) Aout(s) N |
+
+ __error l 50
r(s) 'y _ K(S) commands G(S) ?(S) 5o
Controller Nominal Plant % |
o o = -200}
* Main idea S a0l
- Remove A from picture ... 805 P p e s e

— ... and make transfer function from A_; fo A, as small as possible

 Advantage:

— Guarantees on stability and performance in the deployed feedback system
e Disadvantage:

— More difficult to understand and o use; some tools produce conservative designs




Summary

e Control Terminology and Concepts:

— Linear/Nonlinear systems, Linear-Time-Invariant system, Discrete time
system, System gain/phase, s-plane, z-plane, poles, zeros, pure delay,
phase lag, phase lead, SISO, MIMO, feedforward, feedback, open-loop
instability, control-driven instability, LHP, RHP, frequency response, roll-off,

gain margin, phase margin, stability margin, disturbance, overshoot, rise
time, seftling time

e Control Tools and Methods:

— Block Diagrams, Transfer Functions, State Space Models, Laplace Transform,
Z-Transform, Fourier Transform, Bode plot, derivation of closed-loop transfer
function, Root Locus, PID controllers, LQG controllers, H-infinity controllers

* Multiple Objectives of Control:
— Stability,
— Tracking and Regulation
— Disturbance Rejection
— Noise Rejection

— Robustness
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Further Reading

* Free downloadable books:

— Wikibook of automatic control systems, http://en.wikibooks.org/wiki/
Control_Systems (not how you would want to learn conftrol, but useful as @
reference)

— Kwaakernak and Sivan, Linear Optimal Conftrol Systems, http://
www.ieeecss.org/PAB/classics/

— Wikibook of signals and systems, http://en.wikibooks.org/wiki/
Signals_and_Systems

— Matlab documentation at http://www.mathworks.com/access/helpdesk/
help/helpdesk.html

— Control System Toolbox, Robust Control Toolbox
e Good entry-level control books:
— Franklin, Powell, Emami-Naeini, Feedback Control of Dynamic Systems
— Friedland, Control System Design: An Introduction to State-Space Methods

’,
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