Disruption Mitigation Studies on DIII-D

by D. Shiraki Oak Ridge National Laboratory, USA

with contributions from N.W. Eidietis, E.M. Hollmann, C. Paz-Soldan, and the DIII-D Team

Presented at the 9th ITER International School Aix-en-Provence, France

March 24, 2017

Outline

Introduction to DIII-D

• Shattered pellet injection

- Background
- Comparisons with massive gas injection
- Effect of SPI on disruption properties

• Runaway electron physics studies

- Post-disruption runaway electron suppression/dissipation
- Quiescent runaway regime

Summary

DIII-D tokamak

- Toroidal field = 2.2 T
- Plasma current < 3.0 MA
- Neutral beam power = 16 MW
- Pulse length < 10 s

- Unique plasma shaping and control capabilities
 - e.g. Runaway electron control

3

DIII-D is well suited for disruption research

 Vacuum vessel designed to handle large disruption forces

- Thick all-graphite first wall can withstand high temperatures (> 2000°C)
 - Thermal quench heat loads as well as runaway electron strikes
- Allows disruption studies without fear of damage!

Carbon tiles 16000 kg

Vacuum vessel 8200 kg

DIII-D has extensive disruption mitigation system

- Shattered pellet injection (SPI) Two systems (2nd system for 2017)
 - Unique to DIII-D (Installation on JET this year)
 - ITER disruption mitigation system will be based on SPI
- Massive gas injection (MGI) Two systems
 - Large, high-pressure gas pulse

'Killer' pellet injection

- Small high-Z cryogenic pellet
- Designed as a tool for generating runaway electrons

DIII-D also has a large number of disruption diagnostics

- Time scales, amplitudes are unique from typical flat-top measurements
- Strong forces/vibrations during disruptions are a challenge

Fast camera imaging

TQ radiated power

E.M. Hollmann et al Phys. Plasmas 22 (2015) 021802

RE visible synchrotron emission

NATIONAL FUSION FACILITY

6

RE gamma ray imager **Two-color interferometry**

First-wall/divertor

temperature

Carbon wall causes unmitigated disruption properties to differ from low-Z wall machines such as ITER

- Well documented on JET
- Carbon (Z=6) is a radiating impurity
- Disruptions in a carbon-walled machine are partially 'selfmitigated'

P.C. de Vries et al., PPCF 54 (2012) 124032

For mitigation by high-Z impurity injection, carbon effects can be ignored

• UV survey spectrometer shows dominant radiating species

 In unmitigated disruptions, effect of carbon is significant

• For mitigated disruptions, high-Z injection is dominant over carbon

E.M. Hollmann et al., NF 45 (2005) 1046

Outline

Introduction to DIII-D

• Shattered pellet injection

- Background
- Comparisons with massive gas injection
- Effect of SPI on disruption properties
- Runaway electron physics studies
 - Post-disruption runaway electron suppression/dissipation
 - Quiescent runaway regime
- Summary

Disruption mitigation in ITER will be based on rapid, massive high-Z impurity injection

• Must protect against all three stages of the disruption

 Thermal quench (TQ) heat loads

Spreads thermal energy through radiation

- Current quench (CQ) electromagnetic forces
- Runaway electron (RE) wall strike

- Reduces halo currents through faster current decay
- Collisionally suppresses or dissipates REs

Small high-Z impurity pellets first shown to mitigate disruptions (JT-60U)

One fatal flaw: tends to generate runaway electrons due to rapid cooling!

Massive gas injection achieves similar mitigation, without runaway generation

P.L. Taylor et al., Phys. Plasmas 6 (1999) 1872

Large pellets could be used, if they are "shattered"

- To get around runaway problem, must use very large pellets, which significantly raise plasma density (collisional dissipation)
- Two problems with using such large pellets:
 - Can cause damage to the first wall
 - Would transit the plasma without fully ablating

 Solution: Fire a large pellet, but shatter it just prior to entering the plasma

ITER has selected shattered pellet injection for its disruption mitigation system

Several shattering mechanisms have been tested

- Various designs tested: funnel, various bend angles, S-bends
- Initial design used on DIII-D: Target plate and V-groove
- Current design: 25° bend in guide tube

View from Inside DIII-D

14

D. Shiraki/ITER School/Mar. 24, 2017

Shattered pellet generates a stream of solid pellet fragments, along with gas

 Fragments of several millimeters exist

• Shattered pellet is a mix of solid, liquid, and gas

S.K. Combs et al, IEEE Trans. Plasma Sci. 38 (2010) 400

 After development and testing at ORNL, SPI system was installed on DIII-D in 2009

Outline

- Introduction to DIII-D
- Shattered pellet injection
 - Background
 - Comparisons with massive gas injection
 - Effect of SPI on disruption properties
- Runaway electron physics studies
 - Post-disruption runaway electron suppression/dissipation
 - Quiescent runaway regime
- Summary

SPI delivers injected particles more abruptly than does MGI

- SPI: Particles travel to shatter tube as a solid pellet at constant velocity
 - Particles enter plasma abruptly

- MGI: Gas pulse spread out due to limited conductance of delivery tube
 - Particle delivery is more gradual

MGI flow rates can be slow relative to TQ timescales

Peak flow rates from MGI can occur well into the CQ

D. Shiraki/ITER School/Mar. 24, 2017

Resulting assimilation of MGI is limited by gas flow rates

• MGI particle assimilation measured by interferometer

- Two geometries compared:
 - Open duct
 - Restricted duct

 Assimilation reduced with lower gas conductance

N. Commaux et al, NF 51 (2011) 103001

DIII-D experiments have made direct comparisons of SPI and MGI techniques

• SPI and MGI systems installed on same upper port in DIII-D

- Allows direct comparison of the two injection techniques
 - Identical injection quantities
 - Same plasma target

- Identical diagnostic coverage
 - Example: fast-framing camera

Faster particle delivery by SPI results in higher total particle assimilation than MGI

• Measured peak density from SPI is a factor of 2 higher than from MGI

- Peak density during SPI is reached earlier in the disruption
 - Rapid assimilation of radiating impurities needed for TQ mitigation
 - Advantageous for collisional suppression of seed REs during early CQ

MGI neutrals are stopped near the plasma edge

 Estimated based on field-line pitch, seen from parallel spreading

 Once TQ starts, enhanced radial transport due to MHD mixing

E.M. Hollmann et al, NF 48 (2008) 115007

Ne-I filter (640 nm)

D. Shiraki/ITER School/Mar. 24, 2017

Ne-I filter (640 nm)

Ne-I filter (640 nm)

Solid fragments enhance impurity transport into plasma

From Hollmann et al., Nucl. Fusion (2008)

- For SPI, radial penetration of solid pellet fragments observed
 - Ballistic transport enhances particle deposition in core

- For MGI, gas pulse is initially stopped at plasma edge
 - MHD mixing is dominant mechanism for radial transport

SPI achieves more centrally peaked particle deposition than MGI

• Core deposition characterized by ratio of interferometer chords

- Compared to MGI, SPI deposits more particles in the core relative to the edge
- Peaked deposition is desirable:
 - Allows more effective dissipation of core thermal energy for TQ mitigation
 - Favorable for RE seed suppression

Centrally peaked deposition

SPI mitigates divertor heat loads more effectively than MGI

• 25% reduction in peak heat flux, at both divertor strike points

SPI provides more effective TQ mitigation due to:

- More rapid particle delivery
- Higher total particle assimilation
- More centrally peaked particle deposition

SPI particle delivery extrapolates to ITER better than MGI

- **SPI:** Pellet remains solid until just outside plasma
 - Particle delivery is abrupt, even at larger distances
- MGI: Gas pulse becomes spread out due to limited conductance of delivery tube
 - Particle delivery slows significantly with increasing distance

Figure adapted from Baylor et al, Fusion Sci. Tech. (2015)

Differences in mitigation already seen on DIII-D, but expected to be greater on ITER!

Outline

Introduction to DIII-D

• Shattered pellet injection

- Background
- Comparisons with massive gas injection
- Effect of SPI on disruption properties
- Runaway electron physics studies
 - Post-disruption runaway electron suppression/dissipation
 - Quiescent runaway regime
- Summary

Basic process of disruption mitigation

Some aspects of disruption mitigation are conflicting

- High eddy current forces in blanket modules
- Enhanced drive for RE growth by the avalanche mechanism

- High TQ heat loads to divertor surfaces
- High halo current forces on vacuum vessel

CQ properties vary widely with pellet composition

- Electromagnetic loads determined by CQ properties:
 - Current decay
 - Safety factor
 - Poloidal halo currents

• Edge safety factor governs halo currents:

Poloidal halo currents ~

safety factor

41

CQ properties vary widely with pellet composition

- Electromagnetic loads determined by CQ properties:
 - Current decay
 - Safety factor
 - Poloidal halo currents

• Edge safety factor governs halo currents:

Poloidal halo currents ~

safety factor

CQ properties vary widely with pellet composition

- Electromagnetic loads determined by CQ properties:
 - Current decay
 - Safety factor
 - Poloidal halo currents

• Edge safety factor governs halo currents:

Poloidal halo currents ~

safety factor

43

TQ energy balance can also vary widely with pellet composition

 Images show post-disruption surface temperatures

- Strong reduction in temperatures at divertor strike points, by ~100 °C

Radiated power greatly increased

Mixed species shattered pellets allows control of disruption properties

 Mixture of deuterium (main ion species) and neon (high-Z radiating impurity)

- Homogeneous mixture of Ne/D₂ ice
- Pellet composition is variable, by selection of gas quantities

TQ Radiation Fraction Increases Continuously with Neon Quantity

- TQ radiation fractions vary continuously with neon quantity
- At low neon limit, carbon radiation sets a lower bound
- Neon is a very efficient radiator, so curve 'saturates'
- Similar results have been seen with MGI on Alcator C-Mod and JET

Most disruption properties saturate with neon quantity

Divertor Temperatures Lower Due to Increased Radiation Fraction

 First wall temperatures calculated from full-view IR periscope data

Divertor heating strongly reduced

300 Inner Temperature (°C) strike point 200 100 10⁰ 10^{2} 10¹ 0 Ne quantity (Pa·m³)

Divertor Temperatures Lower Due to Increased Radiation Fraction

SPI accelerates CQ, by making post-TQ plasma more resistive

- Up to a factor 5 decrease in CQ duration
- Expect bigger change for ITER-like wall

- CQ resistivity estimated from analytical model fit
- Pre-disruption: $T_e = 2 \text{ keV} (Z_{eff} = 2)$, $\eta = 4 \times 10^{-8} \Omega \text{m}$

Basics of halo current mitigation

• CQ plasma is very cold, so halo currents flow parallel to (helical) field lines:

 $j \times B = grad p \approx 0$

 Poloidal halo currents contribute most to vessel forces:

 $I_h^{pol} \times B_T = F_Z$

• Direction of the magnetic field matters:

The higher the safety factor, the lower the poloidal halo currents (and forces)

High CQ Safety Factor Maintained by Increasing Neon Quantity

Poloidal Halo Currents Continually Reduced Due to Force-free Constraint

Reduced Amplitude/Duration of Halo Currents Reduce Vessel Displacement

- Vessel displacement determined by total <u>impulse</u> from halo currents
 - Vacuum vessel behaves as damped oscillator with $\tau_{vessel} > \tau_{CQ}$

Neon/deuterium SPI can mitigate, and control, disruption loads

 Each of these disruption properties to be varied continuously by changing the neon quantity

SPI also has potential for suppressing or dissipating runaway electrons in ITER

• (Next section)

Important issues for ITER still need to resolved

Radiation asymmetries

• ITER will require multiple shattered pellets to act together

• DMS performance may depend on ITER injection geometry

 Compatibility of opposing needs for thermal mitigation and halo currents, vs. eddy currents and RE avalanche

Outline

- Introduction to DIII-D
- Shattered pellet injection
 - Background
 - Comparisons with massive gas injection
 - Effect of SPI on disruption properties

• Runaway electron physics studies

- Post-disruption runaway electron suppression/dissipation
- Quiescent runaway regime

• Summary

Runaway electron avoidance/mitigation has several approaches

Collisional suppression of runaways will require very high densities in ITER

- In DIII-D, MGI and SPI able to mitigate disruption loads without generating runaways
- In ITER, avalanche gain is much higher! $\sim e^{\Lambda}I_{p}$

- Open question: How much would we need to raise the density, and is this achievable?
- With enough electrons in the plasma, electron collisions alone can suppress avalanche growth \rightarrow 'Rosenbluth' density (×100 increase)
- Other dissipation mechanisms likely important (see later)

SPI has achieved record densities on DIII-D

- Early work on SPI focused on achieving highest plasma density possible
- Large D₂ pellets injected (12× larger than used for TQ/CQ mitigation)
- Record densities ~20% of 'Rosenbluth' density were achieved

N. Commaux et al, NF 50 (2010) 112001

Runaway electron avoidance/mitigation has several approaches

DIII-D can generate sustained post-disruption RE plateaus

- Disruptions in DIII-D typically do <u>not</u> generate runaways
- A specific 'recipe' for RE production has been developed:
 - Low elongation inner-wall limited plasma shape
 - Low plasma density
 - High magnetic field (B_T)
 - Electron cyclotron heating
 - Argon 'killer' pellet to create disruption

• Argon pellet injector specifically built to generate runaways

Plasma control system can control position of RE beam following the CQ

64

RE plateau can be maintained on DIII-D, for hundreds of milliseconds

RE distribution function can be estimated from a wide set of diagnostics

- Compared to avalanche theory, distribution skewed towards low energy
- Synchrotron losses may be limiting peak RE energy

- Estimating f(E) in a postdisruption RE plateau remains challenging!
 - Other regimes may be better (see later)

E.M. Hollmann et al, PoP 22 (2015) 056108

Pitch-angle scattering off high-Z impurity ions appears important

- Varying the impurity content of the background plasma can vary the mean ion charge <Z>
- Ion collisions contribute dominantly to pitch-angle scattering
- Pitch-angle scattering can dissipate RE current

E.M. Hollmann et al, PoP 22 (2015) 056108

With large quantities, complete dissipation of RE plateau has been seen

- Ohmic coil applies loop voltage to balance the dissipation, and sustain the RE current
- If the dissipation is large enough, RE current goes to zero

RE current dissipation can be increased or decreased, depending on injection

• Plasma control system feedback controls the RE current

• Amount of loop voltage needed is a measure of overall dissipation

 Residual argon from the killer pellet causes dissipation of the runaways

- Background plasma is 5%-10% Ar+

Massive impurity injection can dissipate post-disruption RE beams

• Measure 'effective resistance' of RE beam:

loop voltage / runaway current

 Variety of injection schemes (gas, pellets, high-Z, low-Z) tested

 Initial results: Impurity species makes a large difference, but injection technique (SPI v. MGI) does not

High- and low-Z impurities have opposite effect on RE beam

 Visible survey spectrometer shows that D₂ injection 'purges' residual Ar in plasma

Transport of impurities in the RE beam, and optimal injection schemes, are still under study

- Similar dissipation levels observed for MGI and SPI
- Indicates that shattered pellets are ablated near the edge of the RE beam
- SPI timescales < MGI timescales << RE beam evolution timescales

Outline

- Introduction to DIII-D
- Shattered pellet injection
 - Background
 - Comparisons with massive gas injection
 - Effect of SPI on disruption properties

• Runaway electron physics studies

- Post-disruption runaway electron suppression/dissipation
- Quiescent runaway regime

Summary

Quiescent Runaway Electrons (QREs) allow controlled studies

- "It is desirable to obtain... data under well-controlled, reproducible, well-diagnosed conditions, i.e., not during disruptions"
 - R.S. Granetz et al, PoP 21 (2014) 072506

C. Paz-Soldan et al, PoP 21 (2014) 022514

 Runaways formed during flat-top plasma at low density

Runaway Electrons Experience Several Mechanisms Whose Interplay Determines f(E) Shape and Dissipation

- Acceleration due to E-field vs. drag from collisions
 - E/E_{crit}
- Energy loss to synchrotron
 t-rad-hat
- Pitch angle scattering on ions, from parallel to perp

- Z_{eff}

In order to affect synchrolicon, collisions, and scattering Experimental approach is to vary B₁, density, Z_{eff}

 Low density QRE regime yields improved actuator control and very long timescales for improved diagnosis

New Gamma Ray Imager (GRI) deployed to measure spatial and energy-resolved f(E)

• GRI detects individual gammas, and by 'counting' them determines their energy distribution as a function of time

 Consider 3 shots with very similar RE seed populations

• Vary B_T within the shot

 Lower B_T discharges contain higher energy gammas

 Consider 3 shots with very similar RE seed populations

• Vary B_T within the shot

 Lower B_T discharges contain higher energy gammas

 Consider 3 shots with very similar RE seed populations

• Vary B_T within the shot

 Lower B_T discharges contain higher energy gammas

 Consider 3 shots with very similar RE seed populations

• Vary B_T within the shot

 Lower B_T discharges contain higher energy gammas

 Consider 3 shots with very similar RE seed populations

• Vary B_T within the shot

 Lower B_T discharges contain higher energy gammas

 Consider 3 shots with very similar RE seed populations

• Vary B_T within the shot

 Lower B_T discharges contain higher energy gammas

Increasing electron density lowers E/E_{crit} and shows fewer REs at high energy due to slower RE growth rate

 Transition between growth/decay measured, theory comparisons underway

NATIONAL FUSION FACILIT

Summary

• Shattered pellet injection has been selected for the ITER DMS

- Faster delivery, higher assimilation, and deeper fueling, compared with MGI
- More favorable scaling with device size than MGI
- Mixing pellet species allows disruption parameters to be controlled
- Suppression or dissipation of runaways may be possible
- Important issues for ITER DMS design still being studied

• Runaway electron dissipation physics models being developed

- Post-disruption RE beams can be generated, controlled, and sustained
- Collisional suppression by SPI still uncertain
- High-Z impurity injection can dissipate RE plateaus, but transport of impurities within beam being studied
- QRE regime allows repeatable well-controlled measurements

