

A new science infrastructure with fresh innovation elements

Juan Tomás Hernani General Secretary for Innovation and Industry

ESS in short

FACILITY

A partnership of 17 European nations committed to the goal of collectively building and operating the worlds leading facility for research using neutrons by the second quarter of the 21st century

SCIENCE

Researchers using ESS will produce new knowledge within:

- Materials physics
- Medicine, Life Science
- Energy, Climate& Environment
- Chemistry
- Engineering
- Fundamental Physics

SOCIETY

Transferring knowledge & technology to advance innovation, business life and society

An International Collaboration

Facility

How to produce Intense Neutron Beams? ILL - France

Fission:! One neutron in,

! ! three neutrons o

!!! Use a nuclear reactor

Spallation: Up to 30 neutrons

per proton; !!

Accelerator to propel

proton onto target

High-intensity spallation sources

SNS, Tennessee 2008

OECD 1999:
"One powerful spallation source in every global region"

Evolution of Neutron Sources

ESS project: key facts

- 5MW long-pulse neutron source.
- First neutrons in 2019 on 7 instruments.
- 22 instruments by 2025
- ESS will be user facility.
- Total cost ~1700 M€; funding negotiation
- MoU agreed with 17 european countries
- pre-construction phase completed;
- construction phase started 1. Jan.

unique capabilities of ESS

Symbiosis

- 1. ESS will be around 30 times better than existing facilities:
- Create new scientific possibilities
- 2. Strengthen existing materials science and life science
- 3. Complement existing neutron facilities, such as:
- Materials and Life Science Facility, J-PARC
- ISIS, Oxfordshire
- Institut Laue-Langevin, Grenoble
- Heimholtz Zentrum für Materialen und Energie, Berlin

Science

Neutrons > New Knowledge > New Innovations

Charge neutral
Deeply penetrating

Li motion in fuel cells

Help build electric cars

S=1/2 spin probe directly magnetism

Solve the puzzle of High-Tc superconductivity

Efficient transfer of electricity

Nuclear scattering

Sensitive to light elements and isotopes

Active sites in proteins

Applied materials – life science analogy

Life Science

Materials Science

Materials engineering

Microstructure

Mechanical Properties

Stress & Strain

Visualisation

Materials characterisation

- Residual Stress
- Grain size
- Microstrains
- Dislocations
- Texture
- Precipitation
- Single Crystals
- Joining Technology
- Alloy Development
- In-situ processing
- Hardening mechanism
- •

Diffraction: stress and strain

Applications w.r.t. Residual stresses

Fatigue/Structural Integrity Welds

Alloy development

Microstructure/Texture

Phase transformation

Applied research: Aerospace

Drivers of new, safe technology
Alloy development
Joining technology
Structural Integrity
Aeronautics

Neutron imaging/tomography

E. Lehmann et al. PSI Switzerland

Courtesy: PSI, HMI/HZB, FRM2

Crack tomography

Courtesy: PJ Withers, Manchester

Innovation

Why ESS Innovation?

What is ESS Innovation?

Spinoff Policy

MARKET & INTERNATIONAL STRATEGY

Industrial Liaison Offices Network ILO

- Link to National Governments
- Link to National Industries
- Service to Procurement

PEOPLE POLICY

- Joint agenda
- Science park logistics
- Extended disemination agenda

AWARENESS-RAISING STRATEGY

INDUSTRIAL ADVISORY PANEL

- Top 50 European Users and Constructors
- High level support
- Event Book Web

- Connected to ILOs
- With National Ministry Involvement

- Innovation interviews
- Innovation conferences and events

User support in the ESS innovation system

- Application submission
- Beam time
- Free of charge

FROM TO

INSTRUMENT HW

PROCESS HW

DRIVERS HW

DATA PROCESSING

VISUALISATION TOOL

IMPACT

"The inno strategy will transform ESS in a world class project for industry and society impact, on top of its world class ambition for science generation and sustainability."