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Often....a plasma is defined as a
“high temperature gas”

But remember: a plasma is NOT a gas

Why ? because

1. collisions are in general inefficient
2. A plasma is a long range interactions system
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WE NEED A MATHEMATICAL MODEL

Initial
Too many particles for a N-body conditions
description even for modern Calculations of
super-computing systems the forces
Particle
advancement

Computationally too heav

WE NEED A
CONTINUOUS DESCRIPTION!
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TOWARDS A CONTINUUM MODEL...

The statistical description of a NN particles plasma is based on the
probability densities F giving the probability of finding simultaneously the
particles at locations (xi,.., Xn, Yp,..,05) in phase space.  Too much

complicate!

The probability f,(xy,...,X,vq,...v,) of finding particles 1,.., s at location
(X{.esyX,Vppee.V,) s given by integrating the d.f. allover the particles except 1 to s:

fl(xl,"’xs’vl""vs):jF(Xl,"’XN,Vl,"’VN,)dXs , OXy dvg,, .., AV,

The probability density F contains
the effects of the interactions among
particles
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When the interaction potential can be neglected, the particles
can be considered as statistically independent. For example:

F,(x,, x,) = F,(x;) F; (x,)

When instead the interaction potential among particles is present, the
probability densities can be written trough a cluster expansion:

Fz(Xl y X9 ) = Fl(Xl) F1 (X2> [1 + P12 (Xl y X9 ) ]

and so on for F., 1> 2 P, : two particle correlation function

In general, single particle interactions are assumed as negligible

P, << (and so on)
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STARTING POINT: THE MANY BODY D.F. OBEYS THE LIOUVILLE EQUATION

aF (aF OF )
k—XV-F—a =0

where aT is the TOTAL acceleration of the i-particle due to inter-particle
interactions and external forces.

F = hyper-particle with coordinate (X, ..., Xn, Vis ---» VN)

The value of F, the probability density,
REMAINS CONSTANT AT THE LOCATION OF THE HYPER-PARTICLE

But this does not mean that F is constant in time at any fixed point (X{, ..., Xn, Vs ---» VN)
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By integrating the Liouville equation over all the space — velocity coordinates
but one particle, we get the differential equation for the one particle d.f.

we need to simplify! we discuss later
when this approach is reasonable...

+vl-@+ja —dx X, dv,...dv
ot 0X,

where we have assumed that ;' . €, does not depend v, (1 > 1)

Here we have used the fact that Idx W .[V F dV —o)
the net flux of particles out of

the system vanishes

(constant total

particle number)

oF
as well as jdVZ >

with the condition F (V AN ioo): 0
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In general, the force acting on the ith-particle includes both external and inter-particle forces:

a;' (X, ..y Xy, Vi, 05 V) = (@/my)[ E 4 (v x B)/e | + Zjay

[ o + A____ 4
acc. ext. acc.'int. part.
THE ACCELERATION TERM BECOMES:
of OF
a% . ——+ | > a,, - —dx,..dx,dv,..dv, =0
A J oV,
because _[ ak>1 dx .adx,dv,..dv, =0
oF
since a. . e, does not depend v,  so that, as above, jdv“aT =0
k

(non relativistic limit for the wB term)
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the inter particle force term _[Z a.l - dX dX dV dV

19
reduces to Zajala @T f(z) (Xl,Xa,Vl,Va,t)andVa
1

since all particles of species @ can be considered as identical and
a,, is the acceleration of particle 1 by a generic particle of the species o

AS A RESULT THE EQUATION
FOR £V IS NOT CLOSED
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In a plasma the interactions are LONG RANGE INTERACTIONS.

Indeed, the inter particle interactions can be divided roughly into two parts:

a) the average force due to all other (distant) particles

The forces due to all other particles (a) does not depend on the exact location
of all particles and can be view as “external forces”. By neglecting the
interactions with the nearby particles (b) we finally get the equation for {1 :

ot®  at® g/ v,xB\ of¢
ARV o _

—=0
ot oX, m C OV,

here <E> and <B> are the sum of the external and average electromagnetic fields
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Neglecting single particle interactions, one make use of the probability fV of
finding particle 1 at location x; in phase space under the action of the
electromagnetic fields generated by the full system - mean field theory

In summary, a plasma is

L
described in a reduced way in f(l) (Xla Vl) dxldv1

terms of the one particle
distribution function

CONTINUUM approach

25-8-2014 7th ITER International School 12



In other words we define a PLASMA as composed by free

charges with kinetic (thermal) energy much larger
than the typical potential energy due to its nearest

, neighbor

13,2 — 2
E,? . < nye” = mvy,

where n(l)/ >~ 1/1, | = mean particle distance, a=e,i

1o summarize: we need @O 7\“D3 E

Ap = Vmv2, / 4mne?

where
Ap = Debye length,

Ap =number of particles in a Debye sphere
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In such a system, the particle potential falls off
much faster than in vacuum: Debye
shielding

The electric Coulomb potential of each charge

(I
Are,r

is shielded by the plasma: DEBYE POTENTIAL

NS D
Arre,r
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Characteristic lengths (frequencies)
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IN THIS APPROACH COLLISIONS ARE COMPLETELY NEGLECTED

An example, the Solar Wind: no time to reach thermodynamical

w2

T

w13

Firm5s")

10"

0D

non-Maxwellian distribution functions

equilibrium

Helios 1 — 1376/068 15:04:05 — R = C.504 All
B R e E o e a s EE SRS

I L] 1

Neutral Gaz: v, ;» @

col

Plasma: w » v
7

coll

“Problems” for

plasma

w(10%m /8!

thermodynamics!

often observed in the solar wind
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THE ONE PARTICLE D.F. OBEYING LIOUVILLE EQUATION GIVES THE VLASOV
EQUATION, THE BASIC EQUATION TO MODEL A COLLISONLESS PLASMA

%+v-%+%(E+yXE)%:O
o T ox m\™ C oV

Here f s the distribution function of aspecies, E and B the
electromagnetic fields self-consistently generated by the whole system

x and v are phase space coordinates;

v is NOT the mean flow used in fluid approaches
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WHAT WE NEED TO KNOW TO
SIMULATE THE PLASMA DYNAMICS?

1) A set of equations for the plasma evolution (FREQUENCY REGIME )
2) A set of equation for the evolution of the electrostatic or electromagnetic fields

3) The boundary conditions

4) The initial conditions

THERE IS NOT A UNIVERSAL MODEL.
THE NUMERICAL MODEL AND THE TECHNIQUES TO BE
ADOPTED STRONGLY DEPEND ON THE PHYSICAL PROBLEM.
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WE ALSO NEED TO IDENTIFY THE
REGIME OF INTEREST (IF POSSIBLE!)

-~ High frequency regime [w ~ W, ]

e Vlasov el. + Maxwell [Ion fixed (in geneml)]

- Intermediate regime  [w ~ Q. ]

e Vlasov ions, fluid electrons + Maxwell
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NOTE:

THE VLASOV - POISSON/MAXWELL SYSTEM MUST BE INTEGRATED
IN A 6D+TIME SPACE AND COVERS AN IMPRESSIVE RANGE OF
PHYSICAL REGIMES SEPARATED BY MANY ORDER OF MAGNITUDE IN
FREQUENCY AND SCALE LENGTHS IT.

Even ' with the last generation of TERA
massively parallel computers, the so-
called MACHINES

it is very difficult (read impossible) to integrate the kinetic
dynamics of a “real system” for both ions and electrons.

So, let us discuss how to address this difficulty
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NUMERICAL INTEGRATION OF THE VLASOV EQUATION

Mean field theory

“Viasov

Same physics .

different Eulerian methods ... riea

numerical The Viasov equation is discretized grid

approach on a grid in phase space and the field

equations on a spatial grid
€€ o )
Lagrangian” methods
A la‘z‘"ge set, but f.inlzte”con;;?uta;zonal “PIC codes”
| macro-partic eS. fo ow tne Fixed Maxwell grid;
Here we discuss only characteristics ,
) moving macro-
Eulerian methods :
particles
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The Viasov equation is basically

an

advection equation in phase

Snace;
V A
Dynamical path Liouville’s theorem:
The phase space volume can
Av be deformed but its density is
not changed during the
t+dt . :
dynamical evolution of the
t plasma.
- >
AX X

[t can be considered as a "transport" equation in phase space.
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Invariants of the Vlasov equation:

A fundamental feature 1s that the d.f. 1s subjected to strong
topological constraints, provided by the existence of invariants

%J‘ H (f )dxdv =0 for any function H

This reduces the (1nfinite) number degrees of freedom of the system:

the d.f. can be transported and roll up in a complex way 1n phase

space, but different d.f. iso-lines can never be broken and reconnect

Transitions from "unconnected states” in phase space are forbidden, as for example
from a laminar type state (free-streaming) to a vortex type state (particle trapping).
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A simple 1D-1V example: the TWO-STREAM instability

This instability can be induced, e.g., by an energetic particle stream
injected in a plasma followed by a return current. In practice, we have two
counter propagating electron beams at v, << c. In this case the system
evolution is mainly e.s. and can be studied in the 1D-1V limit:

1 1
_E(vX —Vo1 )V ,1)2 —E(Vy—Voz )Vin 2 )’

f.(x,v,t=0)=1, .| ne

n,e

The 1nstability transfer part of the the beam kinetic energy
into plasma waves with associate electric fields
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First three frames: correct Vlasov evolution

erra)fr .;"";'"'I.;X"',NonVlaSOv

L —— v_ e <"\ transition

phase space representation of the evolution of
the two stream instability
=y
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Two-stream instability. Phase space (x,v) representation
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Long time “non Viasov” transition
between unconnected Viasov equilibria

jf”dxdv; n=3

NON Vlasov

FRAMES 1,2

FRAVE 3

300

FRAME 4

Viasov

time

—>

Dypical Invariant evolution
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CR AR S

: : Lt
Eulerian algorithms - S i 20
: QO
are extremely accurate -
even in the non linear h’. :
h o l B Eulerian Vlasov
phase. For example - S —

they are crucial for
the analysis of spectral

TI T YPTrYI Y™
'

regions where the But: Eulerian algorithms

energy level of are highly demanding in

fluctuations is very terms of CPU and memory!

MR S o e e

low.
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Eulerian methods

The first step is to discretize the Viasov equation on a phase space
grid and the field equations on a spatial grid and solve the resulting
system of finite difference equations by standard HD methods. The
main draw back of such a purely "Eulerian” approach is that the time
step would be severely limited by CFL™ type conditions, prohibiting
very long simulations, and we will not discuss them any further.

WE NEED A DIFFERENT ALGORITHM WITH RESPECT
TO STANDARD FLUID DYNAMICS (e.g. Spectral Methods,
Finite differences, Explicit/Implicit time advancing schemes....)

* Wait for next slide......
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The Viasov equation is an hyperbolic partial
differential equation with characteristics given by

dX_ . dV—F (1) where F=E+vx B
E =V, E — (dimensionless units)

which obey the same equations.as particle trajectories

PHASE SPACE

3.6F e
2 - —
. g a4 — o
ﬂo (-)—S ---------- § _E} - pQ/- .v{%&ed . ée
2.8 ey LPZZZ
dg Y T~ “e
e 2.6 7 Ve,
! ] &/
2.4 7 o7
2.2 — B
0 2 4 6 & 10 12 14
" space
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For the sake of mathematical simplicity, let consider the electrostatic limit

In Hamiltonian form, using canonical variables q = X, p =m,V :

d_q:p oH dp oH

d m. op dt oq

a

Electrostatic limit, F=E

) electrostatic

corresponding S H: = (D((I)

Hamiltonian 2m,,

The phase space trajectories describe thus a

"Hamiltonian flow” T,
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We define z, = (x,,V,) as a phase space point at time t = 0 and z, = (x,,v,) the point with
at time t corresponding to the unique solutions of the characteristics, equations (1):

In other words, the “flow” T i1s REVERSIBLE and preserves
the phase space volume element: T, T =identity ; dz, = dz,

The solution of the Vlasov equation may then be expressed in terms of a
propagating operator P acting on the d.f. If f, 1s the d.f. at t = 0, then

1z = Pfoy=fo(T, 2)
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This (formal) solution may be termed "LAGRANGIAN” in the sense that
the value of f(z, t) at time t depends on the initial coordinates z, at t =
0 along the characteristic arriving at the phase space point z at time t.

The Vlasov equation can be rewritten using the Poisson brackets

of
Z=[H, f
~ =1Hf]

By defining the Poisson bracket operator Af = [H, f],
the PROPAGATOR P can be written as:

Pt= exp(At)
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In the free streaming case (F = 0) the characteristic equations have the
trivial solution x = x,+vt, v = v, and the propagator P' takes the form of a
displacement operator

P’ f(—x:"”rr) — CXp (_IF%) f(x,v,f:l — f(x_ Vi, W, T = 0) — f{](.?-i'u,lr‘{])

Except for the free streaming case one does not know
explicit expressions of the propagator P' even for very
simple physical problems. As a consequence, the theoretical
study of the Vlasov—Poisson/Maxwell system of equations is
based today on large-scale numerical simulations.
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MAIN NUMERICAL SCHEMES

1. Fully Lagrangian schemes

Grid-free Lagrangian particle simulation methods for collisionless plasmas are the only
truly Lagrangian ones. In these simulation methods the force exerted on a given
particle, by the other ones is explicitly calculated with some methods.

The computational cost is very high typically O(Np logNp).

Applied only to low dimensial (1D-1V) test cases.
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2. Particle in Cell methods (the most used in plasma physics)

They use “Macro-particles” which are not particles but a representation of the d.f.

a) Solve continuum equations on an Eulerian grid (Poisson or Maxwell equations,
electron equations for the hybrid case)

b) Track the individual particles by solving the equations of motion;

c) Couple the Eulerian to the Lagrangian framework by interpolating the fields to the
particle positions, E(x,), B(x,);

d) Couple the Lagrangian to Eulerian framework, by evaluating the values of the
electric charge and current densities at the spatial grid points x;

Although the solution of the dynamical equations in the second step introduces some
error and noise, the "noise in particle simulations™ is predominantly associated with the
fourth step where low-order moments of the distribution function are calculated to find
the source terms for Poisson’s or Ampere’s equations
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3. Semi-Lagrangian methods

Instead of tracking numerical particles along the characteristics of the Vlasov equations,
these methods relie on a discretization of the phase space but following the
characteristic curves at each time step. For this reason they are known under the generic
appellation of "Semi Lagrangian™ schemes, although the terminology 1s not well settled.

IN THE FOLLOWING WE WILL
FOCUS ON THESE SCHEMES
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GRID DISCRETIZATION

Assume the flow Tt is known; the problem is then to obtain a

@te for@on to integrate the Vlasov equation

The d.f. {f(t)} 1s discretized on a fixed Eulerian grid {z_}

Since the d.f. f 1s conserved along the flow, the d.f. at the new time step {f_ (t+At)}
1s calculated by following backwards the characteristic during the time step At and
by interpolating the values of {f_(t)} at the origin of the characteristics.

Main algorithm aspect: we need to
interpolate the d.f.
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The trajectory of each Lagrangian point Z_ at t +At 1s
integrated backwards in time to find the "departure point”
Z4_ at the earlier time t_. Then:

fZ,, t,+A) =24, t)) =f(Z, - DZ,, t,)

The "displacement vector” DZ_ = Z._(t. +At) — Z3_(t.) is obtained through

some numerical approximation of the equations of motion usually at second
order in time

Then an interpolation is used to obtain the values f{Z¢ | t ) of the

distribution function at the departure points from the known values on
the mesh grid {f (t.))} .
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ALL WE NEED IS TO INTERPOLATE!

T SUMMARY

red points: where we need to calculate the d.f.

(a) determination of the
departure points Z¢_

f(Zmﬂ tn+At)

4 4
74\N 7| 7

(b) an interpolation of the
AZ4 . t) distribution function
() b 4 .
‘ T 7 to the departure points

N

f(Zm-+2 tn) f(Zm-l’ tn ﬂst tn) ﬂZm—H’ tn)

black points: where the d.f. is known
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INTERPOLATION TECHNIQUES

We focus here only on Finite elements discretizations technique (C_, = m cell)

<fm>(t)=écj f(x,v,t)dxdv

From the Vlasov equation one may obtain an exact equation relating the time variations
of <f_> to the fluxes crossing the cell boundaries. These fluxes depend on the value of
the distribution function f at the cell boundaries but not on the cell averages {<f, >}

A critical step 1s to express the fluxes at the cell interfaces in terms of the cell
averages, a procedure implying an interpolation; once this is done, one obtains an
explicit discretization scheme [Finite Volume Method] a mass conservative, robust

and computationally "cheap” method for the discretization of conservation laws.
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Mathematically, the finite element discretization of a function f(Z) 1s
given by a linear combination of a finite number S of basis functions
Ens(Z), s =0, .., S for each cell (projection of f on a finite dimensional
functional space having a finite complete basis y,, and the
corresponding dual basis & ¢

f(Z)= 8,010 (D) F(2); ay =&, (2)F(2)dZ

[&0.s@ 20 (@)dZ=5, .0,

The basis functions may be considered as providing a low order
interpolation inside each cell; [e.g. a piecewise linear basis
functions leads to a first order interpolation].
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The solution of the Vlasov equation can be expressed in terms
of a propagator describing the flow in phase space:

AZ, t +At) = PAL fit) = (T AV Z,, 1)

If the coetficients a  (t) are known at time t, then f(Z, t +At) at a
later time can be written 1n terms of these known coefficients:

f(Zt+A) =D a, (1) 7. (T"Zt)

By projecting onto the finite element dual basis ¢ , 1t 1s
possible to calculate explicitly the coefficients a_ (t +At)

These method, known as "discontinuous Galerkin method”, relies on the projection
on a function space spanned by a finite basis of functions, without requiring any
condition on the regularity of f and its derivatives at the cell boundaries
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TIME ADVANCING ALGORITHM (electrostatic limit)

approximation of the flow evolution operator T

the Viasov equation — OF | ¢ o

can be cast in the form ot

Then, the propagation operator becomes P'= e/

Free streaming (F, = 0), trivial solution for the characteristic equations

x=X,tvt;v=yv, PH(x,v,t) =f(x-vt, v, t=0) = f(Xy, V()

I'C. G. Cheng and G. Knorr, J. Comput. Phys. 22, 330 (1976)
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SPLITTING SCHEME

We split the Hamiltonian in two parts corresponding
to the two separate advections in space and velocity

AR SV TVICL A N S YA H=H,+H,
ot OX ot oV H =v¥2; H,=—® (x)

the corresponding x and v propagators are explicitly known:

f(x,v,t)= f,(x=vt,v)=P'[f,]; P.'=exp(A,t)
f(x,v,t)=f.(x,v+Et)=P'[f,]; P'=exp(A,t)

Since the operators A, and A, do not commute, PA* does not reduce to the
product P At x P At but instead may be given by a series expansion in At
involving ordered products of P A" x P AVm_yith n, m integers
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It can be shown that

lim| ex (Atjex (Atjex [Atj
‘N% PLUoN) PN PPN

We then make use of a “Magnus expansion” at second order:

A A
szj exp (Alr)exp[ ZZTj + O(TB)

et = exp[

The full Viasov propagator can be therefore expressed in
terms of the two space and velocity propagators

PU[f(xv)]={P* + R + R Y[ f(x,v) ]+ O(dt°)

which would be exact if the propagators would commute

25-8-2014 7th ITER International School
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SPLITTING ALGORITHM, e.s. CASE

F(x,v,t+dt) = P* [f(x,0)] = {42 P & P %2 }[f(x,0)] +
O(dt3)

1) f(x,0) = P22 [fx,0,t)]
2) Vp=n -] f7(x,v) dv
3) filx,v) = P2 [f (x,0)]

4) flx,u,t+dt) = P42 [ff(x,0)]
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SPLITTING ALGORITHM, e.m. CASE

For the sake of simplicity, we consider a one directional, uniform

magnetic field along the z-axis and the 1D-2V limit (x, vx, vy). Lorentz

force: E #v,B, ; E +v.B,

We split the full Viasov propagator into a sum of a propagation in space
and a propagation in velocity, this last corresponding to a translation

plus a semirotation.
dt _
R, Fxv,v) =XV, +[E +Vv,B,]dt,v,)

R f (X, V,,v,) = f(x,v,,v, +[E, —v,B,]dt)

The 1D-2V full advancement of the Vlasov equation is now
obtained as:

P UL (X,V,, v, )] = P2 RS2 R REZ | P2 F(x,v,,V,)]+O(dt?)

“Mangeney & Califano, J. Comp. Phys. (2002)
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The scheme thus reduces to follow backwards the characteristic during the
time step dt and interpolating the values of {f, (t )} at the origin of the

characteristics.

Main interpolation methods

Cubic splines

A piecewise thirdorder polynomial function paSsi
through a set of control points. I.é-g—_sax,’o"zﬁerivative
_ofeach polynomialis commonly set to zero at the

endpoints (boundary condition)

is 1. Charge not conserved
2. Non Local Stencil

[3-diag. matrix to be inverted]

25-8-2014 7th ITER International School 49




Van Leer scheme

II or 11 order, M=1,2

M
At +an) = %H}Af(a)ﬁﬂ(f)? v>0 o=vAt/Ax [i.e. it depends on
== :
the “signed” CFL number!
M+1 .
F(t+Ar) = 2 A ‘ v <0 But much more stable than using
j=—M standard HD methods.

1. Charge conserved
2. Local Stencil

[well suited for parallel computations]

The upwind schemes attempt to discretize hyperbolic partial
differential equations by wusing differencing biased in the

direction determined by the sign of the characteristic speeds

25-8-2014 7th ITER International School
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RESEARCH APPLICATION EXAMPLES

Mite, N
it

25-8-2014

Vlasov s:mulat:ons running
onh super computers

))' \

7th ITER International School
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The Hybrid Model”

Kinetic ions (solve Vlasov equation)

Quasi-neutrality is satisfied
Ch Ay s0o= o

pe

Displacement current is negligible O

ce @ pe

The plasma is weakly magnetized

Electron are considered as a fluid but with mass: d, = /me / m
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The equations

o V.V, f+(E+vxB+F )g—\fl:o Vlasov (ions)

at / ext
) 1 1 , Ohm law - hybrid
E=—(uxB)+ = (JxB)— ﬁ VP +d; %2* """ ] (electron response)

External forcing

oB

e =-VxE Faraday Characteristic quantities

(normalization on ion time scale)

I=VxB | j
J ow frequencies d =c o, = Val A
.~ N =N Quasi neutrality A= eB/mic
P =n’ State equation d=m,_/
4 e — 1M1 /N,

enu, =enu. -J

*Valentini & Califano, J. Comp. Phys. (2007)
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The numerical algorithm consists in coupling the splitting method by
Mangeney & Califano (JCP 2002) and the current advance method
(CAM) introduced by Matthews™ in 1994 for PIC Hybrid simulations

The Viasov-CAM method (see Valentini & Califano, JCP 2007) provides
the second order in time numerical solution for the advancement of
electric and magnetic fields, while the splitting method is a second order
scheme in time for the advance of the particle distribution function in

phase space.

The CAM method is introduced because the standard integration of
the Maxwell equations, at Il order, would be to heavy computationally

(remember that n and j are integrals of f(x, v))

" A.P. Matthews, J. Comp. Phys. (1994)
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2D-3V Vlasov hybrid simulations of “—
“perpendicular turbulence”

B6/Q (Cineca, IT) Forcing
Hydra (RZ6, DE) D onm= 1,2
compressible or
dnitialiconditions - incompressible
plaxwellianadisitribution
p~0.2z 1,910, =*T,

N, , N, =256, 512, 1024
b Nv, , Nv, ,Nv, =713 (51°)
. 1024 < N__.. <8192

procs —
S
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SETUP OF 2D3V HVM two dimensions in physical space and

three dimensions in velocity space

SIMULATIONS
4t ~ : ..
Phase Space Discretization
B =Bé ) f:f(x’y’VX’vy’Vz) N,=1024 N, =1024
' LB B N,=51 N, =51 N, =51
— 15 415 0
k=ke +ke, boundary conditions
>
K Yy Periodic in physical space
f(‘v‘ > Vmax) > O vmax - i5vth

The initial Maxwellian equilibrium is perturbed by a 2D spectrum of fluctuations for magnetic and
proton velocity field. The energy is injected with random phases. Neither density ARturbances nor

parallel variances are imposed at t=0.
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B ~ 1, initial phase

(compressible forcing)

The density n, in the (x,y) plane.

Mainly a fast MHD dynamics.

Np (4,07:0)

25-8-2014

Nx = Ny = 1024

7th ITER International School

t~ 100 Q;il

Strong n, - B, correlation (cut along x at y fixed)

Np, Bz, y=12.3 (4, 07.0)
0z j j

0.1

2.0

—0.f
-2

a S00 400 800 sag ieda

Np, Bz, y=30.7 (4, 07:0)

a.rs
arg

o.0a

0.00
-0.08

]
-
=
o
o

200 400 600 a0

a 200 £00 &00 aoa 1000




The magnetic and electric energy

spectrum. Only MHD scales are excited

68,15, |6E, 1", §=1.0 [4, 07.0]

— T
_ kp, ~ 1
107%— - Kp;
| t~100Q"
T A \
Tond S i
B ' largescale MHD )
i ! e . Ry
L : ! | \\
1077 —
Lo
10710 — N
BESEE
B s
= ,
1077 | | | e
a. 7 .0 Fa.o
k.‘!-'-'ﬁ?
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40

30

20

10

B ~ 1 case, second phase current sheets generation

We have changed the numerical resolution to check the numerical corre

The width of the CS is regulated by the numerical dissipation of the

25-8-2014

Jz (4,20:0)

The perp. current J, and electric field E, in the (x,y) plane

Y Ez (A,20:0)

- 0.02

0.00

-0.02

-0.04

60 X ? 10 20 30 40

7th ITER International School

-0.70

- 0.05
0.00

-0.05




we observe magnetic islands chains

The density n, and perp. magnetic field B, in the physical (x,y)

plane v

3 60

Np (4,20:0) Bz (A4,20:0)

604
501 50 |
[ 40

40

30 - 30

20 20

170 170

n
are anti-correlated

he CS n, and B,

We also observe perp. fastME |
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formation of magnetic
islands chains

O 16 20

S0 40 50 60
x/d.
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We observe strong (anti) correlation between

n, and B, (inside) outside the current sheets

b

Np, Bz, y=72.8 (4, 20:0)

o
oy
LT III|III|III

—
o |
= i
e

O 200 400 600 200

o 2aa 400 ada S0 1 aad

Nn, Bz, y=52.2 (4, 20:0)

¢ 200 400 cdd 800 Tooe
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The magnetic and electric energy spectrum after
CS formations

5B, 1% [6E, %, g=1.0 [4, 20.22]

- |
s0%— 53 —
_ ) i
107 _
| | _
" a 5EP
- | Same spectrum slope as observed by satellites, s
- ' | as with GK 3D, but here formally no KAW:s ! B
i E 3B |
. : at large scale the activity is dominated by the magnetic
" contribution, at higher wave numbers the electric energy
. s significantly more intense than the magnetic one
?' D_ : 1 1 1 1 I L 1 1 1 1 1 1 1 I
0.7 .0 4.0
EFHF
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RECONNECTION EVENTS IN TURBULENCE

Reconnection also observed in Alfven waves decaying turbulence
We observe vortices, islands, current sheets, but...also anisotropy

in velocity space (see next slide)

In turbulence, reconnection locally

occurs (at the X-points)
Thickness = few proton skin depths
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VELOCITY DISTRIBUTIONS IN TURBULENCE

Local magnetic fields

Anisotropy with
respect to local
magnetic field can
be either >1 or <1

functions
affected

[Servidio et al., 2012;
Perrone et al., 2013]
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WE CAN MEASURE TEMPERATURE ANISOTROPY!

The ion distribution functions exhibit How to properly measure

strong deformations in velocity space these distortions?

Assuming f as an ellipsoid

Stress tensor

A (x)= %j(vi —(vi>)(vj —<vj>)fd3v

Eigenvalues
1> 1,> 1,
(temperatures) A
€, p p
Eigenvectors €, €3

Note: for a Maxwellian 4,=

Minimum Variance Frame (MVF)

(Maximum) Temperature anisotropy = A,/4;
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HVM RESULTS VS SOLAR WIND DATA

We considered an ensemble of simulations in

different regions of the parameter space and

Trying to reproduce the
] : evaluated the temperature anisotropy with
solar-wind anisotropy plot ,
respect to the local magnetic field
10.0 ;rﬁ'—rfrrr—rﬁﬁ*ﬂTlT]—l*hrvfrW“rrﬁ—r—ﬁr‘mﬁ'r—i lUI T . —r—r—Trrr v T
: solar wind
= =, )
;_1 1.0 o ‘[:;|1(} '- "
®) - Vlasov hybrid sims
oL Lo s R & n s sy PR ; 10—I ..I.I . ..-...|0 . .....|] \
0.01 0.10 1.00 10.00 107 BlO 10
Bll Il

NICE AGREEMENT
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Firehose instability - benchmarks

triggered by pressure anisotropy

- p, >B l4n s e
p— Py >

B n vV
we initialize using a f(v)= 0 exp| —— — —=
bi-Maxwellian ¥ Fl,/ : | L B B J

instability parameter (p ~ 100) A = (,BP— B — 2)/18 : 0.01
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Firehose instability - benchmarks

parameters: [ =95; f,=97; B, =94; space box: L. =2n * 500

1D3V F'urullel Prnpagmtmg Firehose Instability

o I e e L B M e BE S e B e  I B R B e B e NS TS B
10 5 quasmn predlctlnn [Shapiro et al., "64]
- r
- {tmmwmmmn
107
@
e |
B { {
5 N
s 107" 1 —
P o
c ' hﬁ‘\-\
L= L .J.:"s . ‘“
g linear theory T
107"® [Kennel, Sagdeev, Davidson] : | retained |
Bs- 3 ,4. —
N Tﬁ/‘
1ﬂ-1ﬂ IIIIIIII DO L IL_;'OI..III_&::I.34;]3;03.;1];lllc'lu
0 1000 2000 3000
Time t
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2D-3V firehose investigation

— co-existing parallel and oblique firehose instabilities

the linear regime dominated by
oblique firehose (as expected)

2D3V Firehose Instability

10°

107

Magnetic energy 8B,

Bi on 2D grid at the end of linear phase

code parameters: space box: 768x768, velocity box: 81x81x81

Lx =Ly =2n*76.394 (Ax=0.625), v,=v,=Vv,=[-5.0,5.0]vy,  (Av=0.123)
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THANIC YO FOR
YOUR ATTEMTIOM?

Ulysses Second Orbit Ulysses Third Orbit

magnet
fieid line

Smoothed
Sunspot Number
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