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Plasma confinement in tokamaks:
A combination of magnetic fields
Vacuum vessel

m Plasma confined in toroidal chamber with B fields

m Toroidal field _ _ _
>@->- Helical field lines

m Poloidal field

m Tokamak: central solenoid (CS)
-> plasma current (transformer effect)

m Poloidal field coils (PFC):
—> poloidal field = plasma position

Magnetic field, flux, are essential
guantities and must be measured

Plasma 150 MK Resultant;
helical field lines Plasma current

Toroidal field - :
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Basis about magnetic
tokamaks
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Which magnetic field strength are we speaking
about?

m Unit of magnetic field intensity is: Tesla (in honor of Nikola Tesla 1856 — 1943)

m Source are. - Permanently magnetized material
- Electric currents

10-1° 10-12 10 106 103 100 10*3 10*° 10*° 10*12

B field
strength (T)

QAR 7
4

Human brain Human heart Surface of earth Largest lab B Neutron stars Magnetar

~1018T ~1010T ~510°T field ~2.10"3 T ~10*7 T ~10*10T
Permanent Superconducting
Magnet magnets 1-12 T

Magnet on fridge
~103T

MRI (1-12T)
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A large diversity of magnetic sensors

m Types of sensors:
m Inductive or steady state magnetic field measurements
m Vectorized or total magnetic field measurements

10-1° 10-12 10 10° 103 100 10*3 10*° 10*° 10*12

—

y N

7 \ B field
strength (T)

Magnetic

\ Fusion )

m Selection of sensors requires taking into account the measurement constraints

1) Superconducting Quantum Interference Device 2) Nuclear Magnetic Resonance
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Designing magnetic diagnostics

il V4 V4 V4 g

//”

Constraints for future tokamaks (ITER)

Sensor Diagnostic design

Number of sensor (backup)

Diagnostic
accuracy

Many

Sensor
cut-off freq.

Available
volume

No mainte-

nance

Large temperature
<10~Pa
range (20-250°C) ( ) /

/ Constraints existing on present day tokamaks \

interfaces

VT < 10°C
In sensor

VT <10°C
along cable

Nuclear
K heating

. Already on several
tokamaks

‘\\

Poorly addressed up to
Now. Few examples

New issues. under inves-
tigation. Requires R&D

.

Available sensors:
* |nductive coils/loops
= Hall probes
= Magneto-optic

Disqualify:
/ = Magnetoresistive,
NMR (T°, neutrons)

@ 13" IS — Magnetic diagnostics | Ph. Moreau

’ 9th Dec. 2024 8
Weze



Which information can be extracted from magnetic

diagnostics?
. = ux loop:
Function Parameter | = ont Ly - Viop = Pa - Vioop - . p | _ |
poloidal flux Diamagnetic loop:
Plasma current SO
(Ip) ¢
Plasma position -
and shape Rogowski coil
Plasma X001 Brang
equilibrium it Buorm _
2 Poloidal flux v A £
de/dt BTN o
Loop voltage m , Plasrga shape
Vloop A W:O
Diamaanetism Wi.: Plasma Toroidal flux
¢ energy variation 5®@¢ o
VD activity 12O frequency o Rogowski coil:
ACVIY T High frequency Sensors Plasma current B,
- Plasma torus >
P = Ohmic power I - —
: : . norm
T¢ = energy confinement time Saddle coil inductive coils

09/12/2024 9

West
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Which sensor may satisfy the constraints and
measurement accuracy ?

= Two families of magnetic sensors:
measure B variation vs time dB/dt
direct B measurement

m Inductive;
m Non inductive:

Inductive Non-inductive
sSensors sensors
. Induction colls
Magnetic field vector Hall probes

(Mirnov coils)

- Required
Function Parameter .
measurement
Plasma current
(Ip 0 — 20 MA)
Plasma position o
and shape Rogowski coll
Plasma g— Brang
equilibrium o-gi(t)ilc?n B,
P Poloidal flux
dZ /dt
Loop voltage
Vloop
Diamaanetism W,i,: Plasma Toroidal flux
0 energy variation 3®¢

MHD activity

Low frequency

High frequency

HF sensors

Magnetic flux

(toroidal and poloidal) Flux loops
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current Rogowski coils I(\él_ilglg)et_o-coptic
Iber Optic Current

measurement Sensor)
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From the sensor to the acquisition

Vacuum-vessel (10 Pa)

~ | In-vessel cabling

Feedthrough

Ex-vessel cabling
(~100m)

,
\
‘(

I Real-Time
conditioning processing
acquisition

. 4 ’ f ;
N - P

1

Integrators, pre-
amplifiers, filters,
polarizer, etc.

?

e ; Each step of the measurement chain is important
0 2 4 6 8 10][m to ensure the diagnostic accuracy
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2- Magnetic sensors
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Magnetic field and flux
measurements

2- 1 H - Plasma equilibrium
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Local B measurement: Induction coils or mirnov coils

m Applications: measure 3D local magnetic field vectors = plasma equilibrium
s Measurement principle: Coll is a copper wire wound on a mandrel (e.g. cylinder)

Faraday’s law: 1/, ;; = _aa_(f ¢ = H B-ds

Vint X
B,xis + Cste

-

Small sensor =» uniform B crossing the winding ¢ = S B, .

0B gy
e coion W Vi < B, + Cste
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Local B measurement: Induction coils or mirnov coils

Mirnov coils for application on WEST

= Advantage

m Flexible design (accommodate geometry)

m Sensitivity, cut-off freq. (#layers, #turn/layer) set by design
m Robustness

m Simplicity of operation

m Shortcomings:

m Inductive sensor (only sensitive to AC field)
m Requires integrator electronic

m Rather difficult to miniaturize.

Nevertheless thin film technic are available LTCC®
) Low Temperature Co-Fired Ceramic

Insulation :
layer 2x | R TP PP PP PP PP EPERPPRREE :

inter-line ceramic layer
gap

conducting 400 micron ,200 micron 400 micron

layers 30x

Insulation L ¥ TV N !
layer 2x —— ST T T R o To——;

40 mm



Local B measurement: Hall probe

m Applications: measure 3D local magnetic field vectors = plasma equilibrium
m Measurement principle: hall effect (emf created across conductor when current

and magnetic field are present)

netic field

Magnetic field

(«)

UDC current source
@ 13" IS — Magnetic diagnostics | Ph. Moreau

m Hall probe is a semiconductor (e.g. Si, GaAs, InSb, ...)

No magnetic field =» electrons move straight, V=0

Magnetic field =» electrons movement deflected

v
QD More electrons present on one side
Voltage *
measurement

Electric field (voltage) develop L. to B

Ve — Ry IB Ry : fixed depend on HP material
H— 4 d : thickness of the HP

d

oth Dec. 2024 16
Wt



Local B measurement: Hall probe

= Advantage
m Most widely used magnetic sensor ol

'R

L

= Direct measurement of B: V, = %H IB

i

m Can be miniaturized

1

=)
L

m 3D measurements easy to implement
m Low cost

i‘,

m Shortcomings:
m Low sensitivity, V, small, care necessary to avoid pick-up
m More complex cabling than a simple induction coil (more wires)
m Response depends on temperature (compensation needed)

m Sensitive to neutrons efficiency decrease - regular recalibration 7 1 0 100°C
T O 200°C
[1] https://doi.org/10.1063/1.5038871 & 2] A300°C
[2] https://doi.org/10.1016/j.fusengdes.2023.113476 '100_1 05 0 0.5 1
@ 13 IS — Magnetic diagnostics | Ph. Moreau Magnetic field [T] 7
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https://doi.org/10.1016/j.fusengdes.2023.113476
https://doi.org/10.1063/1.5038871

Currents and plasma
H current measurements

2.2
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Current measurement: Rogowski coil
= Applications: measure current linked by the Rogowski = plasma current |,
halo current (plasma €= vessel), eddy currents, etc.

m Measurement principle: Cu wire wound as a spiral + return cable. Installed around
conductor

< L 0
Faraday's law: V,,;, = BT f Vine o< I + Cste
Ampere’s law: f B-dl=pyl
o3

Turn area A and pitch n determine the sensitivity

b =An fﬁg’,a’ = Anpygl A =area of 1 turn;
n = number of turn per meter

~—————
Ampere'’s law

0l
PERVPNC  nicoraion  J Vi, [ + Cste
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Current measurement: Rogowski coil

= \Wound on the inner skin of the VV, a Rogowski measures Ip

= Advantage
m Routing is free (Ampere's law) - Flexible design
m Compactness, Robustness
m Simplicity of operation

m Shortcomings:
m Inductive sensor (only sensitive to AC field)
m Requires integrator electronic

m Requires perfectly uniform winding
—> in any case pick-up from outer Rogowski current
must be taken into account (calibration)

@ 13" IS — Magnetic diagnostics | Ph. Moreau

18t Spiral (A=50 mm?; n=1000)
Return = spiral (A=25 mm?; n=1000) |

R -i“' BHETHHE jﬂ';ﬁ—%l R

1 I
Hihrk b

ITER External Rogowski design

oth Dec. 2024 20
Wt

40 mm




Current measurement: Fiber Optic Current Sensor

= Applications: measure current linked by the fiber optic > plasma current |,
halo current (plasma €= vessel), eddy currents, etc.

m Measurement principle: Faraday rotation of light polarization due to magnetic field

Mono-mode

Faraday Effect in optical fiber:

A

f} \ optical fiber
Laser | Current |
Polarizer
B ) B
calculation )

B=NV f)ﬁ-_l) = NVI

Polarization
analyser

Ampere'’s law

V = Verdet constant of optical fiber
\/ V ~0.71 rad/MA @ A=1550 nm

N = number of turns around the conductor
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Current measurement: Fiber Optic Current Sensor

= Wound on the inner skin of the VV, FOCS measures Ip.
Also used in the industry to measure large current

Optical fiber

= Advantage
m Direct measurement of current (not current variation): B =NV I
m Routing is free (Ampere's law) = Flexible design
m Compactness, Robustness
m Replaceable (blowing technics exist)

m Shortcomings:

m Spurious effects (non linear birefringence) must be considered
Measurement interpretation might be complex

m Higher cost than just an induction coil
m Sensitivity much smaller than inductive coils (but OK for ITER)
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Current measurement: Other technics

m ‘Resistive Shunt” = Voltage drop
through a known resistance plugged

on 2 points of an electrical circuit

m ‘partial Rogowski” = several tangential
field coils around the VV

/ e
-
o®

\\\

3 % %Ay
4ee® *
%%
o %
\\\\\\\\\\\\\\\\\\“

%
\

(“' //

Current = weighted sum of B, !

[
oth Dec. 2024 23
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Loop voltage and flux
H measurements

2.3

9t Dec. 2024
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Loop voltage and flux: Flux loop

m Applications: measure loop voltage, plasma flux and diamagnetic flux.

m Measurement principle: Voltage induced in a loop of cable (Faraday’s law)

¥ Vieop™ Electric field applied
to plasma torus

=~ ol Plasma flux = equilibrium
— ¢plas — fVloopdt
J Diamagnetic flux
Pdiam = deiamdt

Flux loop cable and terminal
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3333539955932 22232 2283002009230 8

Fast fluctuations in the
equilibrium magnetic field

H - MHD Instabilities

2.4
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HF B measurement: Induction coils or mirnov coils

m Applications: HF magnetic field > MHD ITER Equilibrium sensor |
m Electric model of an induction coil 1070 | 500
%10‘1 -0
((VC: High sensitivity but - -200
small cut-off freq.
103 L ol 400
: 400
Ve 100 L | ITER HF sensor
V; - 200
H, = > R, C e T O
P 14 i1 — 21 7. Kam » Tp =%, '
1+ jwr, — woT T SC_ ©e . z; Re 2l Poor sensitivity but - -200
= Sensor errective area high cut-off freq.
: 10-3 S oS Sl bl 400
m Frequency response is a trade off between 10" 10*2 10** 10* 10*® 10* 10*

sensitivity (eff. Area) and cut-off frequency (low L) Frequency [Hz]
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Few hints about

m cabl

3
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Sensor cabling

m Twisted pairs of cable mandatory

,’ﬁ
Baxis \

Cable $~10m Iongz

Flux passes
through this area

Q
e SV _ dPstray
stray — dt

Twisted pair of cable - stray area cancellation

@ 13" IS — Magnetic diagnostics | Ph. Moreau

m Radiation hard cable and optic fiber

Wide type of effects induced by radiations:
RIEMF: Radiation Induced Electro-Motive Force

RIC: Radiation Induced Conductivity,

TIEMF: Thermal Induced Electro-Motive Force

RITES: Radiation induced Thermo-Electric Sensitivity, etc.

RIA: Radiation Induced Absorption

10 | I | I

"RIEMF in coil [1] 0.81 RIA Optic fiber [2]

= .

pvdl-] EERERRRERREIESIIE e o | NE R WY £0.6

> | @

£ | =04

e : < V-4

i 0 -. ....... E ]

8 ; & 0.2- A=1300 nm
| Coil B | ] %.=1500 nm
| | | | | OG ' : : . - : .
0 20 40 60 80 0

2 4 6
Full power day equivalent Total y dose (MGy)

Spurious voltage 10uV leads to unacceptable error of
5% after 500s

[1] G. Vayakis et al. https://doi.org/10.1063/1.1787580
[2] B. Brichard, "Initial assessment of optical fibres as current sensors: gamma radiation
effects”, EFDA TW5-IRRCER-Deliverable 9



https://doi.org/10.1063/1.1787580

Sensor cabling

m The mineral insulated cables: twisted Cu cable + Stainless steel (or Cu) jacket.
Electrical isolation done by inorganic
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What ITER magnetic diagnostics look like?

= Mag. Diag. embedded in tokamak structure - No maintenance |Radiation / Dose
o . (cm~s™) /MGy
m Radiation risk - additional sensor Location n Y Type Number
I Pick-up coils 186
In-vessel sensors: 12 12 .
_ 3,102 | 102 Rosouski (o] 360
Behind blanket
m(Q/C{l/Jl_eS, f|Xekd on Flux IOOpS 220
inner skin :
11705:6 31-&852 HF coils >300
Pick-up coils 72
Divertor 10% 1 3.10% p-
1700 [ 1000 |Rogowski (I,,0) 48
Pick-up coils 360
E?<-vessel Sensors 15 10| 1010 St‘i?ﬂ%’ (f’,-tf‘te 120
Fixed Osnki\(lv outer 25 3.4 Flux loops 5
Optic fibre 12
Inside TFC case 10 9 -
(T=4K) 1'11_9 2'0_170 Rogowski (1) >3

@ 13" IS — Magnetic diagnostics | Ph. Moreau
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Total : ~ 2000 sensors, 19 types, >300km of cable
Vst
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itioning

Signal cond
m Integrators

) |
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Electronic: Integration of inductive sensor signal
0B gxi
axils 9 B

ot axis

m Signal from inductive coll: V,,;; = =S obtained by integration of V,

oil*

m The most simple active integrator circuit
t

. 1
| | ”C Ve (t) = —= choil dt + Cste
0

S
Vout(t) — R_C Baxis (t) + Bgyis (t — O)

TVOUt
L

m Must measure high freq. (start-up, disruption, etc.) and low freq. (current plateau) !

m Neither operational amplifier nor capacitor
are ideal (V, 4., I current leaking, etc.) E—
Spurious signal ~uV and ~nAmp

Such simple integrator DO NOT

work for fusion applications
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Integrators: Key is to compensate from spurious signal

m Almost all tokamaks have made their own developments

= Analog integrator e.g. ______ femmns, Steh contel

|
WEST [1] :< ‘\—<H' - Continuous output signal - Dynamic range limited to
N L T | - Robust, Cheap (300 €)  output stage
R 1 : = ' - No further processing - Special care during

- |
& - - - -Ample&Hold, | 155 ation assembly and circuit
i selection
" / j [> ADC - Special care for tuning

m Digital chopper integrator e.g. W7-X [2], ITER [3]

(mmm-- o ----1[ Clock e Advantage Disadvantage
1 :
: .’/ : Rectifier + - Latency of the signal - Implementation is more
: > : > Integration - Better control of drift and complex
! et : ADC common mode - More expensive (~1 k€)
' I - - - High dynamic range (up - Requires further
| o to 1000 V) processing to obtain the
|
|

integrated signal

@ [1] P. Spuig et al. Fusion Engineering and Design 96-97 (2015) 966—969; [2] A. Werner RSI 77 10E307 (2006); [3] A. Batista Fusion Engineering and Design 123 (2017) 1025-1028



Which quantities to qualify the integrator performance?

e o s o

IIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIII
IIIIII

+U , symmetric,
cm £
reversed jun.

Flux [uV.s]

0 200 400 600 Time [s]
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m Drift (ITER spec <
400 uVv.s)

= VVoltage standing

m TIme constant and
Inearity

m Pulse response
(Slew rate)

s CMRR (Common Mode
Rejection Ratio) ITER
spec > 140 dB

9th Dec. 2024 35
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https://doi.org/10.1063/1.2220073

Equilibrium
reconstruction, Real-
m Time data processing

5

[1] G. de Tommasi Magnetic equilibrium and instability control IS 2022
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The Grad-Shafranov equation

m Plasma equilibrium: force balance equation: v p = j X B
Plasma kinetic pressure 7 N— Magnetic pressure

m=>EB-Vp=0andj-Vp=0= B and J are lying on isobaric surfaces
= Iso-B surfaces coincide with iso-flux surfaces: B .7y = 0 1 is poloidal flux function

b m Grad-Shafranov equation: A*lp = —Up R p'(l/)) - f(l/J) f'(l/J)

2
With: A*:]gil J n J
OR R aRM d Z* .
f@W)=RB, = ﬁ L,,1(¥) the poloidal current flux function ; f'() = 30
0
p(y) Plasma kinetic pressure; p'(y) = ﬁ
= Link to magnetic diagnostics: ¥ flux measured with flux loops; B, = _% (’;_15 . B, = _|_% g_l/’
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Basic measurements: Plasma current centroid
m Plasma geometric properties can be estimated from magnetic meas. outside plasma [1]

8 PF1
6 CIPF2
i ) .gAA
@ K Btang Bnormal
4+ > g PE3
3l 4 ‘&
2 15 i
—_ 7
Eol o 4 }
— ; ‘
N —
% £
i 4 A |:|
3 4 PF4
O
/R
(90)
4 3 “‘turl".
PF5
_8l RF6] | . , ,
0 2 4 6 8 10 R [m]

= Moment of the currentldistribution [1,2]
J f]go as ZH_O fthang + R g Brorm dl

f is a solution of Grad-Shafranov eq., g is the conjugate fct of f.

7€ Biang dl

s Moment order 0: I, = ﬂj(p dS = .U_o

s Moment order 1:

, 1 R
Zy L= jf ZyjpdS = M_ Z Btang + R log (R_) B, orm dl
0 0

s Moment order 2:

1
R; Ip=ﬂR§j<p dS:M_o R? Biang+ 2 R Z Bporm dl

(R; Z) = Sensor position; (Rp;Zp) = plasma position

th _ i i i
13M1IS I\/Iagnetlc dlagnOStICS [1] L.E. Zakharov, V.D. Shafranov, Equilibrium of a Toroidal Plasma with Noncircular Cross Section, Technical Report, IV Kurchatov Institute of Atomic Energy, Moscow, 1973.
[2] M. F. Reusch, G. Hutchinson, Finite Order Polynomial Moment Solutions of the Homogeneous Grad-Shafranov Equation, Tec. report, Princeton Univ., NJ (USA). 1984.



Outside the plasma: the plasma boundary (1/2)
m Grad-Shafranov equation is written as: (p =0and I,, = 0)

8 PF1
_ m Principle of reconstruction:
° 2 1. Approximate Y(R,Z) on the basis of measurements
at ‘; 2. Determine Y g5,,4 at the plasma boundary (X-point if any)
g 3. Determine plasma boundary (¥ g,4 1SOflux)
2r 3 4. Calculate main plasma parameters
.l [© . .
=0 - m Main issue is item#1,
@)
K- m Pb: solve: A"y =0
a4 5 Inputs: magnetic diagnostics + PF/CS currents
g output: flux map outside the plasma
-or
1 [ m Not a unique solution = ill posed problem

0 2 4 6 8 10 R[m]
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Outside the plasma: the plasma boundary (2/2)
m Grad-Shafranov equation is written as: (p =0and I,, = 0)

8 PF1 . . . - m
m Develop i on eigenfunctions basis . ¢ = z Ck Yk
k=0
or ) _ - _ -
§ [l/) (R, Z)] [lpmeas]
ar 5 m Solve pb of type: [[0y/dZ]|[ck] =| [Bgl
$ [0y/0oR] | [Bz] ]
2 2 10-20 parameters to determine; ~100 measures
Eol [© - Least square solution
™ % m Several eigenfunctions bases can be used
EEE = hatural choice = toroidal harmonics
a4 5 m Filament method: consider a set of filament inside
= plasma + Green’s functions. Solve similar matrix pb
o K = Hermit spline, etc.
PF6| | , m Neural network methods exist (need training)

_8| L [ 1
0 2 4 6 8 10 R[m L .
[m] m Application: RT plasma control, time cycle ~1 ms
@ 13" IS — Magnetic diagnostics | Ph. Moreau oth Dec. 2024 40



Outside/Ilnside the plasma: non homogeneous Grad-
Shafranov equation

= Grad-Shafranov equation is written as: [ RTESISTINS LR M) IC)R MU)D

Z [m]
o

8 PF1
m Solve least square pb with additional constraints:
or 2 m Current profile > f () function
st B m Pressure profile = p(3) function
ot 8 m Using only magnetic diagnostics inputs: f(y) and p(y)
) . .
§ functions approximated by polynom (few parameters)
= m Use additional inputs to constrain f(y) and p(y) profiles
2 B m e.g. MSE, polarimetry, etc. 2 f(y)
? m €.g. Thomson Scattering, XICS, etc. 2 p(y)
-Ar
@ m Application: advanced RT control, time cycle 10-50 ms
@)
-6r e
m Note: No need to have the full equilibrium to control the
o I L plasma pos&shape

0 2 4 6 8 10 R[m]

oth Dec. 2024 41
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Plasma control: the role of magnetic diagnostics

Reference

Ly; Ry Zyp; Rxpt; Lxpts
Qolasma boundary; etc)

Plasma Control

PID or more advanced
controllers

J

\_
4 Actuators
CS, PF colls, H&CD,
fueling

B

Z [m]
o

N B~ OO 0

© O B 0N

[CS3L|CS2L[CS1L|CS1U|CS2U|CS3U|

_ )
Data processing:

Ip; Rp; Zp; RXpt; ZXpt;
plasma boundary; etc.
Solve A" equation
- v ed J

~

Magnetic diagnhostics:
Y; Bhorms Btang outside

\ plasma )

m Full cycle: ~1 ms

’ 9th Dec. 2024 42
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Short list of basic information obtained with
magnetic diagnostics A

Zup
Plasma current and loop voltage: I, = — ¢ Big dl v, = 2betes
p g S ¥ Lo tang loop — ~ 5¢
ZGeom
in ou ZuptZgown . out ™ in eom
Geometry s Geom: RGeom = X +2R : ;ZGeom = p+2d ! ap = = tzR ;A = RGap
m elongation: x = b/a = triangularity: 6, = b/a
m Perimeter: T =Y.dl; = Y (Riy1 — R)? + (Zj 41 — Z;)? Zgown
m Surface: S = 2w Y.(R;+1 — R;)?dl;/2 m Poloidal area: A = Y.(Z;11 — Z;)(Rj+1 + R)) /2 -
m Volume:V =27 (R) A Rin T Rout
RXpt RGeom
and much more ... , = o [ BRol (R —Ro) &+ 2€)-11dS 5 Sp = o [Iy BRou(RY @ -71.dS 33 = g [l BEoi(2) e -1t dS
m Shafranov parameters . . "
P . B+%: 242(1 +—Rm‘<‘g}"”) s = (5 +5, (1——Rm‘{’§> 5)—28;);a=2 [f. (Bpor &) dS/ [, BlydS
m Diamagnetic parameters
8mB . - Rma is . 3 .
o 1=l Abaiam By = 1= 15 Baia = Sy + (1= ") Sy s Waia = 5 tto (R) I Baia ; et
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Basic principle of low freq. MHD modes identification

m Signhal on a MHD sensor:

Sensor #2
Smup = Z Am,n exp[j (wm,nt + mo + TLQO)] b
mn
m Phase shift between sensors Sensor #12
Sbsensor = ne + mo’
Rp DO q»
0' =0 + Asin(6) A:ap+2ap
= Identify m and n using several -
MHD sensors
)]
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Basic principle of low freq. MHD modes identification

= Sighal on a MHD sensor: ' e

SMHD = ZAm,n exp[j (wm,nt + mo6 + TLQO)] ; ». : '\ . . . f A S ITime t'4 000ms
: *\\ . o : - SO-8-68
= Phase shift between sensors _ Sefsor#12__
Sbsensor = N + mo’ RV A
, . A B Rp + DO < <
0’ =0+ Asin(0) _ap 2a, ¢ s & ¢ ‘
= Identify m and n using several Se"s’#zz '
MHD sensors i \ ‘
Phase shift
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