

ITER status and application of integrated modelling to support design, operation and research plan

Alberto Loarte

Science Division, Science and Integration Department, ITER organization

14th International ITER School, ITER Organization, 30 June 2025

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Outline

- Project status
 - Objectives and overall Design
 - Scientific Basis
 - Design: Key Components
 - History and organization
 - Construction Status
- New 2024 Baseline: key elements and rationale → use of integrated modelling
- Revised Research Plan and main elements → use of integrated modelling

Objective and Design

14th ITER International School, ITER Organization, 30 June 2025 | 3 IDM UID: DUVTPC | 3

Demonstrate the scientific and technical viability of fusion energy as an energy source for humankind

ITER is the largest tokamak ever built:

- Major radius: 6.2 m
- B_T \leq 5.3 T, I_p \leq 15 MA
- Total stored magnetic energy: ~50 GJ
- Plasma volume: >800 m³
- Vacuum Vessel volume: 1000 m³
- Device weight: ~23,000 tonnes
- Cryostat: 29 m wide, 29 m high, 16,000 m³

High gain fusion power scenarios:

- $− P_{fusion} = 500 \text{ MW with } P_{heat} \le 50 \text{ MW}$ Q ≥ 10 for 300 - 500s
- $− P_{fusion} ~ 400 \text{ MW with } P_{heat} \le 80 \text{ MW} \\ Q \ge 5 \text{ for } 1000 3000s \\ (steady-state)$

Scientific Basis

14th ITER International School, ITER Organization, 30 June 2025 | 5 IDM UID: DUVTPC | 5

ITER design basis : Size and τ_{E}

ITER Q = 10 scenario (300 – 500 s burn)

- Based on conventional sawtoothing H-mode with H₉₈ = 1 → scenario used for the design of magnets and components (15 MA/5.3 T)
- □ P_{aux} = P_{NBI} + P_{ECH} (+ P_{ICH}) ~ 50 MW → Alpha-heating dominant scenario with noninductively driven current ~ 35%

14th ITER International School, ITER Organization, 30 June 2025 IDM UID: DUVTPC

ITER Q ~ 5 scenario (steady-state)

Based on improved H-mode/hybrid scenario with stationary q profile (q > 1) and H₉₈ > 1.5 length limited to 3000s by hardware design (10 MA/5.3 T)
Obtained with P_{aux} = P_{NBI} + P_{ECH} ≥ 70 MW with non-inductively driven current ~

100%

Design : Key Components

14th ITER International School, ITER Organization, 30 June 2025 | 9 IDM UID: DUVTPC |

Main ITER Components

Heating and Current Drive

Large H&CD installed power and optimized power mix

High flexibility for experimental programme, reduction of risks to achieve Q = 10

ITER Diagnostics and 3-D coils (Error Field, ELM control)

Diagnostics: ~ 60 instruments measuring ~ 100 parameters External error field correction coils + internal ELM control coils

Tritium Breeding : Test Blanket Systems

Tritium not available in sufficient amounts for large scale nuclear fusion energy production \rightarrow Tritium needs to be produced in-situ (n + Li \rightarrow T + He) T production schemes will de demonstrated in ITER (at small scale)

- Different test blanket systems will be installed in ITER to test different combinations of design options:
- Liquid metal breeder
- Solid breeder
- Helium coolant
- Water coolant

Demonstration of the achievement of coolant thermo-hydraulics conditions (both water-coolant and Helium-coolant) relevant for high-efficiency electricity production

14th ITER International School, ITER Organization, 30 June 2025 IDM UID: DUVTPC

13

ITER will maintain self-heated DT plasmas by the fusion reaction for durations of 10 minutes to 1 hour. ITER will demonstrate in an integrated way the technology, materials and physics needed to produce electricity in commercial fusion reactors

> 4th ITER International School, ITER Organization, 30 June 2025 IDM UID: DUVTPC

History and Organization

14th ITER International School, ITER Organization, 30 June 2025 | 15 IDM UID: DUVTPC | 15

ITER's History

The origin of the idea is the super-power meeting in Geneva on 1 November 1985: Gorbachev and Reagan signed an agreement to create an international project to develop fusion energy

Che New Hork Cimes "All the News That's Fit to Print" VOL.CXXXV. .. No. 46,601

Fext of the Joint U.S.-Soviet St

SENEVA, Nov. 21 - Following is text of the joint Soviet-American

clear arms of U.S.S.R. appropri-well as the idea of agreement. During the **Risk Reduct**

Fusion Research

The two leaders emphasized the potential importance of the work aimed at utilizing controlled thermonuclear fusion for peaceful purposes and, in this connection, advocated the widest practicable development of international cooperation in obtaining this source of energy, which is essentialy inexhaustible, for the benefit for all mankind

IDM UID: DUVTPC

Global Challenge, Global Answer

28 June 2005: The ITER Members unanimously agree to construct ITER at the site proposed by the European Union

IDM UID: DUVTPC

 21 November 2006: Signature of the ITER Treaty at the Élysée Palace in Paris

The ITER Members represent more than 50% of the world population and 85% of the global GDP

China EU India Japan Korea Russia USA

ITER Organization

- The intergovernmental organization was formally established on 24 October 2007
- Its objective is to promote cooperation among ITER Members: China, EU, India, Japan, Korea, Russia and USA
- It is the project integrator and the nuclear operator of the ITER facility

A collaboration for 35 years to develop fusion energy to the point that allows the design and construction of a demonstration fusion reactor

Contribution to ITER construction and ITER staff

A unique characteristic of ITER is that most of its components (~ 90 %) are provided in kind by the ITER Members

In-kind contribution proportions:

IO Staff by Member (G, P & Higher) (incl. TCWS, VAS, PostDoc & SCSN) *1.4% Others refers to to Uk, Switzerland, Ukraine ** Since Brexit: 22 Uk staff acquired EU nationality (19 French, 2 Irish, 1 Germany)

EU: 5/11 Other 6 Members: 1/11 each

14th ITER International School, ITER Organization, 30 June 2025 | 19 IDM UID: DUVTPC |

Who makes what?

All intellectual property is shared among the seven Members

ITER Toroidal Field Coil Construction

TF Coils – A Worldwide Collaboration

14th ITER International School, ITER Organization, 30 June 2025 | 10 UID: DUVTPC | 21

21 Jan. 2007

Construction: before it all started

French Alternative Energies and Atomic Energy Commission (CEA) acquires ~180 hectares for the ITER Project, near the CEA Cadarache nuclear research centre

Construction Site today (southwest view)

Construction Status

14th ITER International School, ITER Organization, 30 June 2025 | 24 IDM UID: DUVTPC | 24

Cryogenic plant

Largest single unit plant in the world → cools superconducting coils (10.000 tons) down to -269 °C

26

ITER Control Room

Declared "ready for ITER Organization" in 2022

Symbolic first ever CODAC command issued from the Control Building

19 Dec. 2022 CLEAN E COVER

Progress on some main components

Vacuum Vessel

- 9 sectors (KO: 4, EU: 5) each 440 tonnes
- KO: all 4 sectors (6,7,8,1) at ITER site
- EU: Sector 4 (May 2025), Sector 5 (Sept. 2024) complete and at ITER site (built at Westinghouse-Mangiarotti)
- BUT repairs required/underway on all sectors ... see later

EU VV Sector 4 wrapped and in storage

11111111

EU VV Sector 5 unpacked and placed on transport frame in the Cryostat Building

Toroidal Field coils

- Nb₃Sn, 11.8 T, 68 kA, 41 GJ, 9 x 17 m, 360 t each
- Manufacture complete → all 19 coils on-site (1 spare)

US

 Supply chain and mass production well established

Nb₃Sn

Conductor

Winding Pack

Coil Case

Integration

Poloidal Field coils

- NbTi, 6 T, 45 kA, Largest coils (PF,3,4), 24 m diameter, 400 t
- Manufacture complete → all PF1 (RF), PF2,3,4 (EU) in storage, PF5 (EU) and PF6 (CN) in-pit

Central Solenoid

- Nb₃Sn, 13.5 T, 46 kA, 6 modules, ~4 m wide, total stack height ~20 m, > 1000 t
- Manufacture ongoing \rightarrow 3rd module stacked in April 2024, 4th module delivered end 2023 and stacked in Dec. 2024
- Last two being delivered in

4 modules now in the stack

Error Field Correction coils

- NbTi, max: ±10 kA, 6x6 coils, largest 8.4 x 7.2 m, total weight 78 t
- All 6 top and bottom coils delivered, delivery of 6 side coils expected in 2025

Divertor

- 54 Cassette Assemblies, 8 t each, ~140 m² W monoblocks and flat tiles
- Full-scale prototypes complete for all major components (IVT, OVT, Dome, CB) → supply chains established for manufacture in all concerned DA's → 3 OVT already completed at JA-DA

une 2025

DUVTPC

35

14th ITE

First batch of 48 Shield Blocks leave Donfang Electric Heavy Machinery Co., Ltd. in Guangzhou. Now in Port-Saint-Louis-du-Rhône, awaiting transfer to IO for site acceptance tests later in 2025

IBERDROLA WOOD. LEADING

36

Ite

IDM UID: DUVTPC
Issues with VV sectors and thermal shields

- Dimensional non-conformities in VV field joint contours on the 3 KO sectors delivered to IO turned out to be too large to permit sector-sector welding according to required standards
- Chloride stress corrosion cracking (SCC) found on many of the thermal shield (VV and cryostat) cooling pipes
- Major issues preventing continued assembly of VV sectors
- Issues have been discussed publicly, and details can be found here

https://www.iter.org/newsline/-/3818 and https://www.iter.org/newsline/-/3830

SCC on thermal shields: problem found on several VV shields not yet installed on VV sectors \rightarrow assumed to be present in many locations in VV and cryostat shields

Some areas of non-conformity on VV field joints, particularly where the individual VV segments are joined

VV Thermal Shield repair + replacement

- Repairing 7 VVTS sets (21 panels)
- Remanufacturing 2 VVTS sets (6 panels)
 - Replace corroded pipes
 - 2 mm panel machining to eliminate potential panel corrosion risk
 - Surface polishing to replace silver coating → roughness ~80 µm → low emissivity at 80 K
- Progressing well → all to be completed in 2025

2nd CCTS OBRH pre-assembly test (INOX, India)

VV bevel joint repairs

- Vacuum build-up (manual / mechanized TIG)+ NDE (M-UT and RT)
 - Sectors 4,5,9,6,7: manual TIG; Sectors 1,8: mechanized and manual
- Bevel machining
 - Portable milling machine bolted to sector T-rib
- Sectors 6, 7 repaired in vertical position (SSAT)
- Sectors 1, 4, 8 in horizontal position (Cryostat Building)

VV status

- Sector 7 and 6: repair complete (SSAT), reassembly complete and inpit
- Sector 5 (on-site 25/10): repaired at supplier
- Sector 8 repairs in progress → forecast 31/07/2025
- Sector 1 repair underway, Sector 4 to start
- Sectors 2,3,9: manufacturing in progress (at EU supplier)

New 2024 Baseline: key elements and rationale

14th ITER International School, ITER Organization, 30 June 2025 IDM UID: DUVTPC

New Baseline rationale

- Robust achievement of ITER Project goals, in view of past challenges (delays due to the Covid-19 pandemic, technical challenges in completing first-of-akind components and in nuclear licensing)
- Realistic and reliable assembly commissioning operation
- Achievement of earliest start of the ITER Nuclear Phase (DD operation) and minimization of technical risks → a new 1st phase "Start of Research Operation" (SRO)
- Stepwise safety demonstration (see next slide) → 2 new DT phases (DT-1,2)
- Key elements of the new baseline driven by physics/operations:
 - First Wall: beryllium (Be) \rightarrow tungsten (W), start with inertially cooled W wall
 - Optimized heating mix + boronization \rightarrow ease path to Q = 10 with added W

Why change to a tungsten First Wall?

- Physics basis for tokamak operation with W walls is much stronger than it was at start of ITER construction
- Several issues with Be as PFC:
 - Erosion lifetime
 - Tritium retention in co-deposits
 - Low melting point → lower margin in I_p before potential "gap bridging" on FW panels (disruption current quench)
- Major benefit in assembly complexity and avoid costly later wall changeout
- BUT: lose low Z material facing the plasma and gettering properties of Be → boronization

- Install full blanket shield and a provisional W plasmafacing surface but all inertially cooled
- Use SRO phase to learn:
 - Especially disruption load validation and mitigation (including runaway electrons)
 – without damaging final FW panels and avoiding water leaks
- Actively cooled, final brazed bulk W FW panels
- W armour thickened (8 mm (Be) → 12 mm (W)) in locations prone to runaway electron impact

First Wall Strategy DT-1,2: Final First Wall

Actively cooled Enhanced Heat Flux: ~5 MWm⁻²

Normal Heat Flux: ~2 MWm⁻²

Assembly guided by physics \rightarrow magnetic field symmetry essential ! > Magnetic field symmetry essential for high pressure \rightarrow P_{fusion} ~ pressure ²

> Sub-millimetric alignment of components essential (22°C \rightarrow -269°C + F_{magnetic})

Integrated modelling

- SOLPS-ITER: good for 2D W source, but time independent
- DINA: time dependent but simple core transport model
- First attempts at JINTRAC core-edge integrated simulations
 - JETTO-SANCO + EDGE2D-Eirene
 - Core transport: TGLF-SAT2 + NEO
 - W bundling with 6 superstates
- Same P_{SOL} self-regulation found
 - Good agreement with SOLPS-ITER for same input
 - Consistent core-SOL solutions with no core W accumulation if central EC power deposition

Impact of a W First Wall on Q = 10 target

- WallDYN2D W source calculated for range of Q = 10 background plasmas (SOLPS-OEDGE)
 - Wall source 4.5 26 x 10²⁰ atoms s⁻¹
 - W source dominated by Ne + W selfsputtering (CXN sputtering negligible)
- → effective W source for JINTRAC modelling (TGLF-SAT2 core transport)
 - Q = 10 ok even with > 2x worst case W source
 - Uncontrolled W peaking not found in ITER high Q plasmas → W core transport in ITER dominated by turbulence, unlike in current devices (higher collisionality, stronger rotation)
 - Pedestal W screening for n_{sep} > 0.4 n_{GW}

Revised Research Plan and main elements

14th ITER International School, ITER Organization, 30 June 2025 IDM UID: DUVTPC

Summary of 2024 Baseline phases

ite

Summary of 2024 Baseline phases

Detailed revised Research Plan now completed

 Use of W wall requires B_T values that provide effective central heating → scenario development at 2.65 T & 5.3 T in SRO and DT-1

ite

Assessment of scenarios with integrated modelling

> 15 MA/5.3 T L-mode H scenario in SRO

Assessment of scenarios with integrated modelling

> 15 MA/5.3 T Q = 10 scenario

14th ITER International School, ITER Organization, 30 June 2025 | 57 IDM UID: DUVTPC | 57

Conclusions

- □ ITER aims to demonstrate the integration of physics and engineering required for fusion to be an energy source for humankind (i.e. to build fusion reactors)
- Construction of the ITER and commissioning of ancillary systems is making good progress after overcoming difficulties in the last years
- □ To minimize impact of delays a "new baseline" has been developed. Re-optimized experimental plan to provide a robust approach to DT operation and $Q = 10 \rightarrow$ takes advantage of more available ancillary systems than in the original plan
- □ Research Plan developed in detail. Plan aims to be realistic/robust → retirement of risks as soon as possible with minimum impact and no success ensured at first try
- □ Some details of Research Plan will change as R&D on open issues advances
- □ Extensive use of integrated modelling to support the new baseline and Research Plan → Validation of models and tools to predict ITER plasma behaviour and planning of experiments in essential for efficient implementation of Research Plan
- □ Support by Members' fusion researchers is essential for ITER's success

Thanks for your attention !

New Baseline publications

Plasma-wall interaction impact of the ITER re-baseline *

R.A. Pitts ^{a,*}, A. Loarte ^a, T. Wauters ^a, M. Dubrov ^a, Y. Gribov ^a, F. Köchl ^a, A. Pshenov ^a, Y. Zhang ^b, J. Artola ^a, X. Bonnin ^a, L. Chen ^a, M. Lehnen ^{a,2}, K. Schmid ^{c,1}, R. Ding ^{d,1}, H. Frerichs ^{e,1}, R. Futtersack ^f, X. Gong ^d, G. Hagelaar ^g, E. Hodille ^{h,1}, J. Hobirk ^c, S. Krat ^{i,1}, D. Matveev ^{j,1}, K. Paschalidis ^k, J. Qian ^d, S. Ratynskaia ^k, T. Rizzi ^k, V. Rozhansky ^{l,1}, P. Tamain ^{h,1}, P. Tolias ^k, L. Zhang ^d, W. Zhang ^{d,1}

https://www.sciencedirect.com/science/article/pii/S235217 9124002771?via%3Dihub

- Technical report on R&D needs for the new Baseline <u>ITR-2025-05</u>
- New Research Plan in full detail to be published as Technical Report in few weeks

OPEN ACCESS

IOP Publishing

Plasma Phys. Control. Fusion 67 (2025) 065023 (60pp)

Plasma Physics and Controlled Fusior

https://doi.org/10.1088/1361-6587/add9c

The new ITER baseline, research plan and open R&D issues

A Loarte^{1,*}, R A Pitts¹, T Wauters¹, I Nunes¹, P de Vries¹, S H Kim¹, F Köchl¹, A Polevoi¹, M Lehnen^{1,27}, J Artola¹, S Jachmich¹, A Pshenov¹, X Bai¹, I S Carvalho¹, M Dubrov^{1,2}, Y Gribov¹, M Schneider¹⁽¹⁾, L Zabeo¹, X Bonnin¹, S D Pinches¹⁽¹⁾, F Poli¹⁽¹⁾, G Suarez Lopez¹⁽⁰⁾, M Merola¹, F Escourbiac¹, R Hunt¹, L Chen¹⁽⁰⁾, D Boilson¹, P Veltri¹⁽⁰⁾, N Casal¹, M Prevnas¹, A Mukheriee^{1,28}, W Helou¹, F Kazarian¹, S Willms¹, I Bonnet¹, R Michling¹, L Giancarli¹, J van der Laan¹, M Walsh¹, V Udintsev¹, R Reichle¹, G Vayakis¹, A Fossen¹⁽⁰⁾, M Turnyanskiy¹, A Becoulet¹⁽⁰⁾, Y Kamada¹, G Zhuang³⁽⁰⁾, G Xu⁴[®], X Gong⁴, J Huang⁴[®], M Jia⁴[®], R Ding⁴[®], J Qian⁴, Y Sun⁴[®], Q Yang⁴[®], L Zhang⁴, M Xu⁵⁽⁶⁾, L Zhang⁵, S Brezinsek⁶⁽⁶⁾, J Stober⁷⁽⁶⁾, J Hobirk⁷⁽⁶⁾, F Rimini⁸⁽⁶⁾, J Garcia⁹⁽⁰⁾, S L Rao¹⁰, J Ghosh¹¹⁽⁰⁾, D Sharma¹¹, B Magesh¹⁰⁽⁰⁾, R P Bhattacharya¹¹ G Matsunaga¹², H Urano¹², T Hirose¹², K Ogawa¹³, G Motojima¹³, C K Sung¹⁴. H H Lee¹⁵, J K Park¹⁶, M S Cheon¹⁵, Y M Jeon¹⁵, S Konovalov², S Lebedev¹⁷ N Kirneva², Y Kashchuk¹⁸, N Bakharev¹⁷, X Chen¹⁹, A Bortolon²⁰, L Casali²¹ R Maingi²⁰, F Turco¹⁹, K Schmid⁷, Y Liu¹⁹, J R Martín-Solís²², C Angioni⁷ I Pusztai²³⁽⁰⁾, D Fajardo⁷⁽⁰⁾, D Mateev⁶⁽⁰⁾, E Lerche²⁴⁽⁰⁾, D van Eester²⁴⁽⁰⁾, P Vincenzi^{25,26}⁽⁰⁾, R Futtersack⁸. V Bobkov⁷ and L Colas⁹

https://doi.org/10.1088/1361-6587/add9c9

IRP strategy to Q = 10

- Interleave D and DT plasmas to minimize use of neutron fluence
- Develop 50-50 DT H-mode scenarios using D and D + T (< 50%) H-mode scenarios
- Validate plasma models at lower (I_p, %T) ←→ predict next step and repeat
- Access to high P_{fusion} already from 7.5 MA/5.3 T if H₉₈ > 1 at high q₉₅
 - Strategy used successfully in JET DTE-2 (e.g. J. Garcia NF 2023, C.F. Maggi NF 2024)

- DD and DT plasmas performed at lower I_p (Steps 1-4)
- Extrapolate by modelling to higher I_p to the level required to achieve Q ≥ 10 in DT (Step 6)
- Identify corresponding plasma parameters for DD (Step 5)
- Perform experiments in DD to verify Step 5 prediction
- If successful perform DT plasma

And finally: overall Project Schedule for new Baseline

- ITER Council 35 (Nov. 2024) endorsed the overall approach proposed for the 2024 Baseline
- ITER STAC-32 (May 2025) endorses Level 2 and Level 3 Research Plan → ITER Council 36 is this week!

Miscellaneous reserve material

Stepwise Safety Demonstration

- ITER is a very large step from present day magnetic confinement devices
- Complexity, large uncertainties and very ambitious project goals make a safety demonstration in "one go" very challenging

Phase 1: DT-1

- A first phase of safety demonstration of ITER operation
- Focused on the achievement of specific project goals (Q = 10, 300-500 s)
- Limited neutron fluence (1% of present "end-of-life" Project Specification)
 → ~3 x 10²⁵ neutrons

Phase 2: DT-2

- Second phase of safety demonstration with knowledge acquired during DT-1
- Attain lifetime neutron fluence → 3 x 10²⁷ neutrons

New Baseline publications

Plasma-wall interaction impact of the ITER re-baseline \star

R.A. Pitts ^{a,*}, A. Loarte ^a, T. Wauters ^a, M. Dubrov ^a, Y. Gribov ^a, F. Köchl ^a, A. Pshenov ^a, Y. Zhang ^b, J. Artola ^a, X. Bonnin ^a, L. Chen ^a, M. Lehnen ^{a,2}, K. Schmid ^{c,1}, R. Ding ^{d,1}, H. Frerichs ^{e,1}, R. Futtersack ^f, X. Gong ^d, G. Hagelaar ^g, E. Hodille ^{h,1}, J. Hobirk ^c, S. Krat ^{i,1}, D. Matveev ^{j,1}, K. Paschalidis ^k, J. Qian ^d, S. Ratynskaia ^k, T. Rizzi ^k, V. Rozhansky ^{l,1}, P. Tamain ^{h,1}, P. Tolias ^k, L. Zhang ^d, W. Zhang ^{d,1}

https://www.sciencedirect.com/science/article/pii/S235217 9124002771?via%3Dihub

 Technical report on R&D needs for the new Baseline just released as an ITER Report

OPEN ACCESS

Plasma Phys. Control. Fusion 67 (2025) 065023 (60pp)

Plasma Physics and Controlled Fusior

https://doi.org/10.1088/1361-6587/add9c

The new ITER baseline, research plan and open R&D issues

A Loarte^{1,*}, R A Pitts¹, T Wauters¹, I Nunes¹, P de Vries¹, S H Kim¹, F Köchl¹, A Polevoi¹, M Lehnen^{1,27}, J Artola¹, S Jachmich¹, A Pshenov¹, X Bai¹, I S Carvalho¹, M Dubrov^{1,2}, Y Gribov¹, M Schneider¹⁽¹⁾, L Zabeo¹, X Bonnin¹, S D Pinches¹⁽¹⁾, F Poli¹⁽¹⁾, G Suarez Lopez¹⁽⁰⁾, M Merola¹, F Escourbiac¹, R Hunt¹, L Chen¹⁽⁰⁾, D Boilson¹, P Veltri¹⁽⁰⁾, N Casal¹, M Prevnas¹, A Mukheriee^{1,28}, W Helou¹, F Kazarian¹, S Willms¹, I Bonnet¹, R Michling¹, L Giancarli¹, J van der Laan¹, M Walsh¹, V Udintsev¹, R Reichle¹, G Vayakis¹, A Fossen¹^(b), M Turnyanskiy¹, A Becoulet¹^(b), Y Kamada¹, G Zhuang³^(b), G Xu⁴[®], X Gong⁴, J Huang⁴[®], M Jia⁴[®], R Ding⁴[®], J Qian⁴, Y Sun⁴[®], Q Yang⁴[®], L Zhang⁴, M Xu⁵⁽⁶⁾, L Zhang⁵, S Brezinsek⁶⁽⁶⁾, J Stober⁷⁽⁶⁾, J Hobirk⁷⁽⁶⁾, F Rimini⁸⁽⁶⁾, J Garcia⁹⁽⁰⁾, S L Rao¹⁰, J Ghosh¹¹⁽⁰⁾, D Sharma¹¹, B Magesh¹⁰⁽⁰⁾, R P Bhattacharya¹¹ G Matsunaga¹², H Urano¹², T Hirose¹², K Ogawa¹³, G Motojima¹³, C K Sung¹⁴. H H Lee¹⁵, J K Park¹⁶, M S Cheon¹⁵, Y M Jeon¹⁵, S Konovalov², S Lebedev¹⁷ N Kirneva², Y Kashchuk¹⁸, N Bakharev¹⁷, X Chen¹⁹, A Bortolon²⁰, L Casali²¹ R Maingi²⁰, F Turco¹⁹, K Schmid⁷, Y Liu¹⁹, J R Martín-Solís²², C Angioni⁷ I Pusztai²³, D Fajardo⁷, D Mateev⁶, E Lerche²⁴, D van Eester²⁴, P Vincenzi^{25,26} R Futtersack⁸. V Bobkov⁷ and L Colas⁹

https://doi.org/10.1088/1361-6587/add9c9

Cryostat lower Thermal Shield repair also underway

 Support thermal shield panels being repaired and replaced – the easiest parts of the cryostat shield to access

ITER Objective

TF/PF cold testing

- New baseline includes mitigation for some of the superconducting magnet risks:
 - Cryostat to accommodate TF coils and PF1 coil
 - A complete unit for energization (up to 67 kA for TF coils) and associated Fast Discharge Unit
 - Connection to ITER's cryoplant using 1 of 3 He refrigerators (cool to 4 K)

All being installed in PF winding building \rightarrow start of operation scheduled for Dec. 2025

Cryostat base already completed in ASIPP/SENPEC (China)

Impact of a W First Wall on Q = 10 target

- Very recently re-calculated to fix some issues with WALLDYN (W atomic rates) and with TGLF-SAT2 core transport model
- Result essentially unchanged
 - W core transport in ITER dominated by turbulence, unlike in current devices (higher collisionality, stronger rotation)
 - Pedestal W screening for n_{sep} > 0.4 n_{GW}
- NB: H-mode access with the W wall requires sufficient power in reserve if radiation losses are high (α-heating needs to build-up)

SOLPS-ITER, limiter plasmas and W

- First attempts to model ITER limiter phase
- Simulation database (I_p, n_e, P_{ECH}, D_{\perp ,SOL}, χ_{\perp ,SOL</sub>)
 - Stationary simulations single time point in DINA current ramp
 - Hydrogen plasma
 - Numerical grid to core
 - Including sputtered W (up to W³⁰⁺ followed)

Self-regulating system

- f_{rad} ~ 0.7÷0.9 independent of heating distribution or core transport
- Use database to obtain T_{e,LCFS} (n_{e,LCFS}) as boundary condition for 1.5D DINA scenario code → more realistic W source
 - Good experimental evidence that this occurs from EAST
 - Further expts. now on ASDEX-Upgrade, WEST
 - ITER modeling has been further extended (to be subm. to NF)

Always an equilibrium SOL solution with $\langle Y_{W-W} \rangle = 1$ which constrains P_{SOL} and determines the core W content required to dissipate ($P_{IN} - P_{SOL}$)

Y. Zhang et al., PSI 2024

Boron layer lifetime?

- How long might the gettering properties of the boron layer last → how often might ITER need to boronize?
 1.0E-3
 1.0E-2
 1.0E-1
 1.0E-1
- WallDYN3D with EMC3-Eirene plasma background
 - Trace B & W migration in 3D shaped wall
 - Case of "hot stagnant" far SOL
 - Initial 100 nm thick boron coating
 - Account for surface composition dynamics

Plasma wetted areas deplete rapidly (~1000 s) \rightarrow deposition at divertor baffles \rightarrow re-erosion \rightarrow most boron ends up below inner divertor target \rightarrow potential dust source Gettering lifetime maybe several 10⁴ seconds

K. Schmid, PSI 2024

14th ITER International School, ITER Organization, 30 June 2025 | 72 IDM UID: DUVTPC | 72

SRO OBJECTIVES

- Commission control and protection systems with plasma up to 15 MA/5.3 T
- Demonstrate disruption mitigation up to 15 MA/5.3 T
- Develop plasma scenarios up to 15 MA/5.3 T in L-mode
- Develop plasma scenarios up to (at least) 5 MA/2.65 T in H-mode with DD plasmas within 1.5 x 10²⁰ neutron fluence (in-vessel human access after SRO)
- First assessment of fuel retention and removal efficiency (H \rightarrow D \rightarrow H)
- Successful SRO phase: ITER can reliably operate at its maximum I_p and B_T in L-mode and in H-mode at reduced levels (5-7.5 MA / 2.65 T) in DD plasma (marking start of nuclear operation)

DT-1 OBJECTIVES

- Commission control and protection systems with plasma up to Q = 10
- Demonstrate disruption mitigation up to Q = 10
- Develop plasma scenarios in DT up to 15 MA/5.3 T in H-mode (or at lower I_p if Q = 10 can be demonstrated) within ~3 x 10²⁵ DT neutrons (e.g. ~550-600 pulses, Q = 10, 300 s burn)
- Study physics of burning plasma and their integration with all-W PFCs
- Address specific issues for development of the TBM programme, including high repetition operation with $P_{fus} \ge 250 \text{ MW}$
- Successful DT-1 phase → ITER can achieve DT plasmas with dominant P_α and all required scenario integration and control issues can be maintained over time scales of 100's of seconds → Q = 10 goal and key information on upgrades and licence for DT-2

Strategy for achievement SRO objectives

- Develop L-mode scenarios to 7.5 MA/2.65 T in H ($q_{95} = 3 6$)
 - Commissioning with plasma (Plasma Control/Protection, ECH, diagnostics, DMS, ...)
 - Characterize L-mode and first try to H-mode
- $B_T = 5.3 \text{ T}$ and explore high q_{95} operation in H ($q_{95} = 6 12$)
 - Commissioning with plasma
 - Disruption load characterization before activation by DD and DMS demonstration
 - Characterize L-mode at high q₉₅
- Develop H-mode scenarios up to 7.5 MA/2.65 T in DD ($q_{95} = 3 6$)
 - Commissioning with plasma (+ ICH H-minority or 2ω_D, diagnostics, ...)
 - H-mode scenarios up to $P_{add} = 50 \text{ MW} (P_{add}/P_{LH} (@0.9n_{GW}) \ge 1.5)$
 - Demonstrate T (D) removal strategy
- Complete hydrogen L-mode scenarios (7.5 MA/2.65 T) and expand to 15 MA/5.3 T
 - Commissioning with plasma (+ ICH ³He-minority, …)
 - Disruption load characterization and DMS demonstration to highest W_{mag}

SRO H&CD scenario development pathway

- Use of W wall favours B_T values that provide effective central heating → scenario development at 2.65 T & 5.3 T in SRO and DT-1
- EC operation (up to 67 MW available):
 - 2.65T: X2 in L-mode, O2 in H-mode
 5.3T: O1
- IC operation (10 MW available): – 2.65T:
 - in D and DT: H minority or D 2nd harmonic majority
 - in H: no efficient scheme
 - 5.3T:
 - in D or H: ³He min. at 53 MHz
 - in DT: ³He min. followed by T maj. both at 53 MHz

M. Schneider

Overall SRO plan (includes FP demonstration)

Strategy for achievement of DT-1 objectives

- Develop L-mode scenarios (15 MA/5.3T) in H with new hardware & retire T risks
 - Commissioning with plasma (plasma control/protection, ECH/ICH/NBI, diagnostics, DMS, ...)
 - Demonstrate PFC performance up to P_{add} ~ 100 MW
 - Demonstrate disruption mitigation by hot-tail + T-decay seeds to highest W_{mag}
 - Demonstrate T removal efficiency
- Develop DD at 2.65 T ($q_{95} = 3 6$) and then DD and DT at 5.3 T ($q_{95} = 6 9$) "short pulse" $t_{"burn"} \sim 50$ s (~ n_{He} stationary) to Q = 10
 - Connect with SRO H-modes at 2.65 T to assess new H&CD impact
 - Develop H-mode scenarios at 5.3 T interleaving DD and DT plasmas → address high I_p/P_{tot} control and integration issues at each step in DD before DT
 - Gradual increase of W_{th}, W_{mag}, P_{fusion} and RE seeds to minimize disruption risks
 - Demonstrate Q = 10 at lowest possible I_p ($H_{98}(q_{95}>3)>1$) taking short pulse advantage
- Extend "Q = 10 scenario" to $t_{"burn"} \ge 300$ s in DD and then in DT
 - Apply active control schemes (e.g. ECH stabilization on TM)
 - Apply passive control schemes (tuning of L-mode and early H-mode profiles)

A. Loarte, APS 2024

14th ITER International School, ITER Organization, 30 June 2025 | 79 IDM UID: DUVTPC |

A. Loarte, APS 2024

14th ITER International School, ITER Organization, 30 June 2025 IDM UID: DUVTPC

iter

Strategy is to interleave DD and DT to minimize use of neutron fluence

- Develop 50-50 DT H-mode scenarios by D and D + T (< 50%) H-mode scenarios
- Validate plasma models at lower (I_p , %T) $\leftarrow \rightarrow$ predict next step and repeat
 - Strategy used successfully in JET DTE-2 (J. Garcia NF 2023, C.F. Maggi NF 2024, F. Rimini EPS 2024)
 Q = 10

A. Loarte, APS 2024