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“All models are wrong, but some are useful.”

— George Box

Validation is tThe process of establishing if a model can indeed e useful

e \When applicable?
e \What uncertainty”?
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e Fundamentals of V&V and UQ
» Validation and Verification
»  Fidelity hierarchy for V&V
»  Statistical validation
» Uncertainty propagation

e FUSE: Implementing V&V and UQ in practice
»  Machine opfimization
» Infegrated dafta analysis
»  Pulse design

e Key lakeaways
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Start with an experiment

‘ ijal‘:hesis ’(

Exp. Sefzu.lo ‘
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Repeat experiment setup in simulation

‘ AijthesLs ‘(
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Validation quantifies the agreement between simulation
and experiment

‘ AijthesLs ‘(
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If unsatisfactory, we can amend the theory or acknowledge
limited region of validity

‘ ijokhests ‘(

v

Exp. Se&up ‘
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Validation is not verification, we need both

VERIFICATION:
does my code
solve the
equ&ELOMS
RIGHT ?

\ ijokhesis ‘(

Exp. Se&up ‘
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VALIDATION:
does my code
solve the
RIGHT
eqw&l‘:wns ?
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Validation gives confidence in our fundamental

understanding of the physics at play

eg. CGYRO+NEO validation with o Tthve vr\;e (;/folido’red Gl’lr GK
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Reduced models and ML surrogates play a key role in

providing indirect validation of high-fidelity models

Experiments ___________ =~ e _

uonepijep

Theory-based
Reduced Models

uonepijep

ML Surrogates

eg. TGLF*NN
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Reduced models and ML surrogates play a key role in

providing indirect validation of high-fidelity models
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Reduced models and ML surrogates play a key role in

providing indirect validation of high-fidelity models
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Reduced models and ML surrogates play a key role in

providing indirect validation of high-fidelity models

O."Meneghini - ITER Summer

750 o
: Experiments. ___________ s
600 |
: 5
— L4 E
gﬂ 450 - °, ° ° g".
8 o. ° ° g
> 300f . ’ R .::’ . . .
© s i First-principles Models _ _ /
150} !'f .. "':.’.' eg. CGYRO
SN © 0
N .,:- | | | | Qe
0 150 300 450 600 750
TGLF [gB]
Theory-based
Reduced Models /
MSLE = 0.009
10 T 7500 107
E B 103L
0 L =
S 10 5000 |
+
107! F 2500 o 10}
< .
5 0] B
H
l I I 0 1 60 =0.90
—1 0 1 107 L Q=Y.
10 10 10 N=122229
’2 |. n' 1 LI l L L L
TGLF-NN B (AT LR T T U TR VT
Experiment Qo [gB]
SChGoI™=Jul2025

uonepijep

* CENERAL ATOMICS



So, validation is not a point, it’s a statistical measure

spanning large parameter ranges
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Statistical validation allows systematic tracking of

model improvements and confident model selection

DIII-D profiles mean relative error [%]
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Statistical validation relies on databases of
high-quality experimental data analyses

NOTE simulation tnpuks ‘ijobhesis ‘(
when doing validations: »

1. &xp setu
(eq. PCS trajectories)

2. Exp analyses
(eg. equillbrium, measurements)

3, Assumi&mv\s

(eg. SOL transport coeff)

Assumptions are a weekness
i our validation efforts
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Statistical validation establishes trust needed to apply mod-
els predictively, to inform experiments and machine designs

NOTE sinulakbion E,V\Fu,Es f—)\ Hypothesis ‘

when doing Frediﬂhoms: I

Exp. Sefzu.lo ‘

1. Exp setu \
(eq. PCS trajectories)

2. mrp onaluses
(eg. zquilibrium, measurements)

Predickion

Experémem& ‘

= Assumi&ov\s
(eg. SOL transport coeff)

Assumptions are a weekness
i our validation efforts

=7 Fredid:i,ve

= e e ———

0. Meneghini - ITER Summer School — Jul 2025 <§* GENERAL ATOMICS




How do we get rid of input assumptions?

Assumed

Assumed

Sinulakion

Assumed

L

e ——— —— o
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Couple another model = Why we do integrated modeling!!!
Does coupling more codes always add value?

Assumed

Assu‘mad MO d@l A

Cc«u[ated

Assumed

ey

Assumed

e

Assumed

Assumed

e ——— —— o
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Couplings can lead to recursion, which need to be resolved
with different algorithms

Assumed

Assu‘mad MO d@.{. A

C‘.ou,[ated

Assumed

Assumed | Depev\d@.m::?

g, "8 Loops

Assumed

Cc::«u[ai.ed




Some inputs are known...but what does it mean to know an
input? When do we stop coupling codes?

Kinowin

Knowi means: a
* MEASURED | 5

when validating ASSW"“M
* CONTROLLED o——| Model A
when [aredic&ins Coupled

Kinowi
M

Assureis | Depev\d@.m::?

H " Loops

Assumed

Cc::«u[ai.ed




Uncertainty quantification tells us where integration should

stop

Quantities measured with sufficient accuracy

e Stop when you reach parameters that are well-characterized
e UQ quantifies whether current accuracy meets requirements

Controllable parameters

¢ Stop when model inputs that can e directly controlled
e Managing uncerfainty becomes a design/control problem

Uncertainty-dominated regimes

e Stop when propagated uncertainties exceed model fidelity error
e Sensitivity analysis becomes more valuable than detailed modeling
e Focus should shift to establishing methods for robbust control
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Choice of uncertainty propagation method depends on

model non-linearity over range of input uncertainty

® Linedr = Turbulent transport
Input Uncertainty (Gaussian)
— f(xo + 6) — Ouput Uncertainty (Not gaussian)
f(CC())—I—f/(x())cf—l—l ol 0)e"+. .. "
Analyftic, finite differences, or 5 1r
automatic differentiation -
- Cheap: evaluate f'(xo) e <
&
&
e Non-linear =0 "'
- Sampling-based methods .
Monte Carlo, unscented transform, ' l
chaos polynomials, distribution |I |
particles, ... 1.0 1.5 2.0 2.5
- Expensive Profile gradient

Practical solution: Lean on ML surrogates, which naturally support AD
and are fast enough to support sampling methods
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When assumptions are made, we should use unceriainty

propagation to evaluate their effects on the solution

EQ. ITER core-pedestal-equilibrium intfegration w/o SOL model,
but assuming 0.5 < few < 1.0 anNd 1.0 < Zeg pea < 3.0

14
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0.4 |

00 02 04 06 08 1.0

225
200
175

150

Zeff pedestal
o

=
(9]

125

1.0 100

05 06 07 08 09 1.0

Greenwald fraction
O. Meneghini - ITER Summer School - Jul 2025

Jtor [MA/m?]

15

00 02 04 06 08 1.0

(&

0% GENERAL ATOMICS



e FUSE: Implementing V&V and UQ in practice
»  Machine opfimization
» Infegrated dafta analysis
»  Pulse design
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FUSE: Putting V&V and UQ principles into practice

e Bornin 2021 to support nascent
FPP design industry

e Applying lessons learned from
GA modeling expertise
OMFIT, OMAS, STER, TGYRO, TGLF-NN,
EPED-NN, EFIT-Al, TokSys, GASC, ...

e Built from scratfch, all in one
language: Julia
- High-level like Python

- As fast as C
- Auto-differentiable

e Uses ITER IMAS ontology
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Few (strict) design rules enable high degree of modularity

: : FUSE
@ All datais stored in a
cenfralized dd dafa Initialization Simulation
structure (IMAS based)
3
' act actors
@ Actors only talk via dd ini oD parameters
parameters
® Actor functionality set by
act parameters — ’
dddIMAS m
P oag ' t
® 44 can be initialized from strusture (nctor0)
0D ‘ini° parameters
@ FUSE interfaces to outside c
world only Vvia dd IMAS OMAS OMFIT
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Whole fidelity spectrum is supported, but strategically bal-

ance fidelity with speed and use ML when advantageous

e \Want fo captur_e realistic FIDELITY
system dynamics
- ol Frmst
@ \Whenever possible, use of S| | pRINCIPLES
theory-based (reduced) 215
models S — | E
@ Sufficient fidelity to S — \¢
capture critical interface _ ;.
physics between subsystems, %‘ — %7
SO in-depth high-fidelity ’al — \'&s
studies _
do not upend couplings % ANALYTICAL
e While enabling rapid design e Sy orena
iterations HPC— Laptop  Redltime poBysTNESS
@ Julia for high performance How to infegrate models:

e (re)-write in Julia (preferred)
* |In memory coupling
¢ File-based (last resort)

@ Tightly coupling of models

® Break efficiency-fidelity
tfradeoff with ML surrogates
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FUSE models span from the plasma core to the site boundary
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FUSE models span from the plasma core to the site boundary
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FUSE models span from the plasma core to the site boundary

lep. Flux-Matching transport
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FUSE models span from the plasma core to the site boundary

Equilibrium
———- Coils optimization rail
— — - Boundary constraints 30
%  Saddle constraints
T 20
—-10
i
i s
=i g
e a4 |
i Ly o
B =
i !
<]
&
g
% -10
-20
Optimization of PF coils placement ) -30
|
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FUSE models span from the plasma core to the site boundary
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FUSE models span from the plasma core to the site boundary

Engineering risk [Total = 26.8 $M]

( Balance of Plant w/ ML surrogate )
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FUSE is designed to support all three main applications of

integrated modeling

] 2 3
MACHINE DESIGN PULSE DESIGN DATA ANALYSIS

= xperimentcal data
o~ =4tz and interpetatio

2 4 p——
:"MACHINE DESIGN R P E
SOHOINIE NI A DEITIER A TRECSET TN & GRs. (@ dsanto0ErnomE L s

=Al=- PULSE DESIGN PLASMA CONTROL SYST!

( arri vetlion AuBputors and and disagotic}
=z maxinizing ssion fusion
while ortiimizing tresuctorg

lastim

\\

) l \
Bperimental data Q§
and interpetation

Besttestor

e Same theory-based models e Same integrated workflows
e Same act./diag. models e Same data structures
® Same machine-agnosticity e Same need for speed, always!

There’s a great potential to exploit these synergies!
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GOAL: From idea to pre-conceptual designs in minutes

and evaluate wildly different concepts on same footing

1) MACHINE DESIGN
""MACHINE DESIG

N Blastimn Magneic e
" confoneationt denlgue

|

2 BHAOO OEGI ATDE I ciak R ,‘! |
) [ y TR =3

3 - I e -

M astire
derernmesr
OB L

il
contenceient
FITE

B v Mashigic
k i conoGresfan:

i . e A 1 _ ‘.‘ a R k:
* 7 é L ﬁb “-}%‘ optamization @ E;?g @ a0
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FUSE uses a multi-objective constrained optimization

workflow to enable design explorations and trade studies

OBJECTIVES eg. Trade study for positive-6 VS negative-o FPP
0 mMin capital cost PT NT

@D mox gos 10 | | ~

CONSTRAINTS

4
® Poectic = 250 +£ 50 MW y
e flatfop = 1.0+ 0.1 (h) ; [
TBR=1.1+0.1 5 |\ f N
Psoi/ Py > 1.1 (for +9) oA |
Pyo)/R < 15 (MW/m) \

ACTUATORS ‘
® 5.0< Ro < 10.0 (M) o1 ‘ | )
3.0 < Bg < 15.0(T)

4.0 < I, < 22 (MA) )
1.6 < k<22 ;
|6] < 0.7

1.1 < Zeffped < 3.5
0.4 < fowped < 0.85
Impurity: Ne, Ar, Kr

0 < Pec < 100 (MW)
0 < pec < 0.9

0 < Pxg < 50 (MW)
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Multi-objective constrained optimization workflow

enables designs exploration and frade studies

A Genetic algorithm steers solufion towards the Pareto front

e Each point is a full machine
design that fakes ~ 1 min to run

e Highlights complex system
dynamics and exposes
objectives tfrade-offs

e Helps different stakeholders
identify a target design

(scientists, investors, policymakers.... )

e Scalable parallel execution
runs 10k+ cases in few hours on
small cluster
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Multi-objective constirained optimization workflow

enables designs exploration and frade studies

A Genetic algorithm steers solufion towards the Pareto front

It takes 10°s of thousands of full designs to find optimal solutions that
saftisfies the constfraints. EQ:

Power generation constraint Minimum cost objective

350

500
300

250 400

200
300

150
200

Pelectric [MWe]
capital cost [$B]

100

100

1 1 1
0 2.0x10" 4.0x10" 6.0x10" 0 2.0x10% 4.0x10" 6.0x10"
Individuals Individuals

Accuracy, speed, scalability, and robustness are all key
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We can use optimization datasets to relate uncertainties in

key parameters to cost. Relation to risk = cost x probability

Number of feasible designs

Capital cost [$B]

Ul
o
o

400

300

200

100

o

25 ¢

20 |

15 ¢

10
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PT Mainly limited by:

NT

- LH power threshold
- Divertor power exhaust

mainly limited by:
- Confinement

(no pedestal and
higher radiation)

| === 1.0 LH power threshold

1.5 LH power threshold
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We can use optimization datasets to relate uncertainties in

key parameters to cost. Relation to risk = cost x probability

Number of feasible designs

Capital cost [$B]

(o))
o
o

500
400
300
200
100

o

25 ¢

20

15 ¢

10

26

PT Mainly limited by:
- LH power threshold
Above - Divertor power exhaust
relaxed
LH divertor NT mainly limited by:
thresholdl CONST. - Confinement
S (no pedestal and
0 & 10 15 20 25 30 35 higher radiation)
Psol/Ro [MW/m]
257
—£$ gsol?ﬁ i é?) 1.5 LH power threshold
o sol | === 1.0 LH power threshold
:E% g:z:?ﬁ i ;,(5) - 207 e 0.5 LH power threshold
H_/ 7 15}
S
210} o
5 Higher
5| LH power
| | | | | | threshold
3 4 5 6 7 8 0 —; : : : ; :
Qos 95
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GOAL: Enable high-throughput accurate analyses that

are essential for comprehensive model validation

DATA ANALYSIS

E Srperimential data
=3z and interpetatio

o @ # & Bperimental data QY M
A p - and interpetation
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Conventional Vs integrated analysis is a strategic choice

Integrated data analysis/Bayesian inference

—{Tﬁ. N Tan, w, ] l,,;} l
4. T

Equilibrium

Conventional/waterfall data analysis

-4 E
iy
§*§ Equrllbrtum "
hnd remnstructmn
i | .

Parametrization

Modeling

Synthetic
diagnostic

Step 3:
lon profiles

e Separate inverse problems ® A single Bayesian inference problem
¢ [feration to reconcile couplings ® Rigorous uncertainty propagation
e Computationally efficient cec, mins) e Computationally intensive s, days)

= applied o many shots/fimes = applied to selected shots/times

Eventually we will want fo run infegrated analysis for everything, but for now
Breadth + Depth = Robust validation within computational constraints

(conventional)  (infegrated)
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High-throughput conventional data analysis provides the

large datasets needed for statistical validation (and ML)

eg. Kinetic equilibrium reconstructions and transport analyses on DIII-D:

2013 2017 2019 2023 2025
Manual KineticEFIT KineticEFITiime CAKE CAKE @ NERSC FUSE
Days Hour Hour Hour 20 minutes 1 min
1 timeslice 1 fimeslice 10 timeslices 50 timeslices 80 fimeslices 100 timeslices
Pressure [MPa]
¥ — CAKE
3!\PSfimuttar i ook
§- ¥ FUE h

i 5.5 8 0.06 |
LAl b Tl T

0.04 +

0.02 |

UDD | ! 1 L
0.0 0.2 0.4 0.6 0.8 1.0

280109

—
J—
S

Current [MA/m?]

Mapping iteration results Final iteration results

1.3M high-quality DIlI-D kinetic EFIT
reconstructions using 10k node-hours

¢ Starting point for any exp. analysis
e Train DIlI-D ML eq. surrogates
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Integrated data analysis maximizes the information yield,

especially critical for next-step devices

Fusion pilot plants will have few and more limited diagnostics than
current experiments, because of nuclear and radiation constraints

e.g. ITER reconstruction from IDA with combined
magnetics + TS + TIP + DIP measurements

50 v MAP solution x
v Ground truth
§ 4  MCMC Solution
=, 0 . -
=3 x X x
& x ¥
—50 - ¥ ox
I 1 I
0 b} 10
Index
15 —— MCMC Solution
(T M MAP solution
= —:— Ground truth
24, 10 | Tems
= )
0 - I 1 1
0.00 0.25 0.50 0.75 1.00

Wnorm

[kPa]

dpMHD /d!p norm

g 10 | I IL.A
X —— MCMC Solution
- RPIPPN MAP solution
=, 9
= —-— Ground truth

N

| Ne TS

M

0

!p norm

T T T
0.00 0.25 050 0.75

1.00

4
Y

—— MCMC Solution

¢ -+ MAP solution g 1
» —— Ground truth

T
0.5

1.0
wnorln
—— MCMC Solution
300 L MAP solution
é 200 4 —-— Ground truth
— I Pion,constr
g
100+
0 I 1 I 1
0.00 0.25 0.50 0.75 1.00

W norm

= TIP + DIP LOS
* TS pos.
target

Frrrrrriri+t+++4

NOTE: To be practical any IDA must rely heavily on ML forward models

e FUSE used to create 50k self-consistent eq. and transport solutions
used for training ITER free-boundary equilibrium ML surrogate

30
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GOAL: Time-dependent capabilities for fast, high-fidelity,

machine-agnostic pulse design with PCS integration

Feed-forward
simulation

For scientists

31

PULSE DESIGN

Al PULSE DESIGN PLASMA CONTROL SYST

(8) Autee and remermenclerring | recuellion AubBoutors and and disagotic:

(@ Al txezvad rememencing maiaimiiay == maxinizing sston fusion

@) naniraing fueziow ie avoing duguphimes while ontiitmirzing tresuctorsg

b .
> “w/
j

' AUEI‘USE' y 4
DESIGN | //

~ 'PULSE DESIGN =4
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Feed-back
simulation

For physics-
operators
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To maximize computational efficiency FUSE uses an

implicit time-dependent flux-matching transport solver

o Electron energy flux
Py —I_ <v ) F> — S Heat source
03 I & Flux-matching points
Transport flux
STATIONARY — o2}
e No time dependence §
t = o0 and ZX = () =
Ea{Jr (V-T) = S e —

e Flux-matching at few radial
locations + linear profiles
iInverse-scale-length

Electron temperature

20
15

10 [

[KeV]

—a— Flux matched profile
Pedestal boundary condtion

0.0 0.2 0.4 0.6 0.8 1.0

minor radius
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To maximize computational efficiency FUSE uses an

implicit time-dependent flux-matching transport solver

I+ (V-T)=5

STATIONARY
e No fime dependence
t — oo and %—)t( =0
.
L4 (V-I)=S5

e Flux-matching at few radial
locations + linear profiles
iInverse-scale-length

DYNAMIC
® Time-derivative as a source
5,

e |mplicit fime stepping.
allows taking larger steps
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[KeV]

[102°/m?3]

Electrons temperature

OO | | | | | |
1 2 3 4 5 6
Electrons density
0.8
0.6
0.4 - ms - 250 s wall clock
: | |——0t=10 ms - 125 s wall clock
—08t=25 ms - 50 s wall clock
J |—06t=50 ms - 25 s wall clock
—06t=75 ms - 18 s wall clock
0.2 ——6t=100 ms » 12 s wall clock
—Experiment
| | | | | |
1 2 3 4 5 6
Time [s]
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Time continuity provides a stringent validation of models

and couplings. From rampup, through flattop, to rampdown

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.0

1.5

1.0

0.5

0.0

Ip [MA] - Vicop [V]

== Ip reference [MA]
=—Ip_IMA] 1
vl

. TN

1 2 3 a4 5 6
Parallel current source [MA/m?]

-bootstrap [0.709 MA]
ohmic [0.513 MA]
sawteeth [-1.2e-16 MA]

A EO-MA]
——nbi [0.0113-MA]
—total [1,23 MA]

02

0.4 0.6 0.8 1.0
Safety factor q
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0.100

0.075
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0.000

Mo

Electrons temperature [KeV]

.0 0.2 0.4 0.6 0.8 1.0
lectrons power source [MW/m?3]

ahmic [0.225 MW]
exchange [-0.342 MW]
sawteeth [4.44e-17 MW]
a/at [-0.0319 MW]
radiation [-0.469 MW]

L nbi [2.81 MW]

0.0 0.6 0.8 1.0

0.2 0.4
Electron energy flux

— Total source [2.2 MW]
= Total transport
© TGLFNN satl_em d3d
#+ Hirshman-Sigmar
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lons power source [MW/m?]
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0.2 0.4 0.6 0.8 1.0
Total ion energy flux

—Total source [2.85 MW]
=—Total transport
© TGLFNN satl_em_d3d
+ Hirshman-Sigmar
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— see FUSE in action «

O. Meneghini - ITER Summer School - Jul 2025

Densities [m~3]

1.00x10°°
7.50%10'°
5.00x10"
T —— c
2s0xd? FT —t"" P L *'\
\
0 E L i L L K.
0.0 0.2 y 0.4 0.6 0.8 1.0
. Particle source [s~*/m?]
1.0%10° r |
gas [2.2e+22 571] ]
sawteeth [1.81e+05 577] |
__._a_fgt [2.43e+19 571 /
19 ——nbil5:26e+20 7] 4
5.0x10 F —total (2,256 +23 511
-
B
o e e
-s.0x10"%
—1.0%10?® L s . .
0.0 0.2 0.4 ﬂ;ﬁ 0.8 1.0
" Electron particle flux
2.0x10 r
—Total source [2.25e+22 57%]
— Total transport
o TGLFNN sarllvem,dsd
1.0»:1019 [ # Hirshman-Sigmar ; ;
/@
<@
0 | LT T T S S
-1ox107 |
—2.0%10 L s . . |
0.0 0.2 0.4 0.6 0.8 1.0



The validated models are then used to make predictions of

new experiments and devices

LI¥IA]
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Time dependence + Optimization = Trajectory optimization

with built-in sensitivity analysis

Leverage same optimization infrastructure used for machine design
eQ. Find optimal Ip and n, ramp

5F e - rates To max ITER fusion energy
qﬁlmlzatlon
/.~"domain
— 10 T——
<
=
—
(= I 1 1 1
0 100 200 300 400
[s]

e Define optimization domains
for actuators fime traces

e Define time-depedent
objectives and constraints

e Take full advantage of HPC
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Grad-Hogan solver under development to model plasma

dynamics in combination with control system

[
15
10
—a— Flux matcher
5 e
~
\
\
\
\
. |

N
o

| |[—— Total source
03 —— Total transport
& TGLF-NN

-
Electron energy flux

[MWm
[KeV]

----- EPED-NN

Electron temperature

@ Free-boundary solver
@ Theory-based transport

® Inductive coupling of
plasma, PF colls, and
conducting sfructures

@ Co-simulation with
control system

- Initially with TokSys

- Developing coupling
with DIII-D PCS

Ealul B
Theory-based transport
updates kinetic profiles
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Grad-Hogan solver under development to model plasma

dynamics in combination with control system

@ Free-boundary solver 5 T
@ Theory-based transport

® Inductive coupling of
plasma, PF colls, and
conducting sfructures 6 b

@ Co-simulation with s | 0
control system o |

- Initially with TokSys 3oy .

- Developingcoupling =Y g o  * /Y2 g  *rH g

with DIII-D PCS 0 2 4 6 8 10 12 0 02 4 6 8 10 12 0 2 4 6 8 10 12

VDE modeling in FUSE
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e Key lakeaways
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Infegrated modeling with proper validation, verification,

and unceriainty quantification matters now more than ever

The Stakes The Opportunity
e [TER: S20B investment e Design with confidence
e FPPs: SB decisions ahead e Optimize before building
¢ |imited shots for learning e [earn from every shot
e No room for surprises e Accelerate deployment

V&V /UQ Fundamentals

@ \alidation transforms models from theoretical fools into trusted
predictive capabilities

@® Stafistical validation across parameter ranges is essential.
Not just point comparisons!

® ML surrogates bridge the gap between computational efficiency
and physics fidelity

@O UQ guides infegration boundaries: stop when parameters are
well-controlled or uncertainties dominate

38 0. Meneghini - ITER Summer School — Jul 2025 <§* GENERAL ATOMICS



FUSE puts V&V and UQ principles into practice:

Machine optimization - Data Analysis - Pulse Design

Open source ecosystem
e Apache 2.0 (OK commercial)
e 25+ packages
e 200K+ lines of Julia
e Documented
® Regression tested
e Preprint on Arxiv

Consider Julia for your next
softfware projectl

e High-level, fast, auto-diff o e b
e Enthusiastic community

done, fast
e Most Julia devs were
former Python devs ;)

@ 4 julia ClF
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