### Use of integrated models to interpret measurements

Anna Medvedeva Glasser – M2P2, Aix-Marseille University, École Centrale Méditerranée ITER International School – Aix-en-Provence, 2025

### Why interpretation of measurements matters



Visualisation of plasma in a tokamak @2024 EPFL/Laboratory for Experimental Museology (EM+) – CC-BY-SA

REALITY

### Why interpretation of measurements matters



Visualisation of plasma in a tokamak @2024 EPFL/Laboratory for Experimental Museology (EM+) – CC-BY-SA



JET pulse visible range camera image

### Why interpretation of measurements matters



Visualisation of plasma in a tokamak @2024 EPFL/Laboratory for Experimental Museology (EM+) – CC-BY-SA



JET pulse visible range camera image

### Experimental diagnostics, numerical models and theoretical understanding often diverge





CHALLENGE 1 Measurements are not direct

CHALLENGE 2 Fusion devices are not transparent

### CHALLENGE 3

Plasma physics includes complex multi-scale coupled processes

# Use of integrated models to interpret measurements

synthetic diagnostics

# Use of integrated models to interpret measurements synthetic diagnostics

1. Recognize the LIMITATIONS of experimental diagnostics

### 2. Learn what SYNTHETIC DIAGNOSTICS are

3. See how synthetic diagnostics help measurements INTERPRETATION

### Use of integrated models to interpret measurements

1. Recognize the LIMITATIONS of experimental diagnostics

### 2. Learn what SYNTHETIC DIAGNOSTICS are

3. See how synthetic diagnostics help measurements INTERPRETATION

### Use of integrated models to interpret measurements

## LIMITATIONS SYNTHETIC DIAGNOSTICS INTERPRETATION

### Electromagnetic:

magnetic coils, flux loops, halo current sensors, interferometry, refractometry, polarimetry, electron cyclotron emission

### **Electromagnetic:**

magnetic coils, flux loops, halo current sensors, interferometry, refractometry, polarimetry, electron cyclotron emission

Optical:

spectroscopy (visible, UV, VUV, X-ray, CXRS, MSE), H-alpha monitors, visible & IR cameras, Thomson scattering, X-ray detectors

### **Electromagnetic:**

magnetic coils, flux loops, halo current sensors, interferometry, refractometry, polarimetry, electron cyclotron emission

### Optical:

spectroscopy (visible, UV, VUV, X-ray, CXRS, MSE), H-alpha monitors, visible & IR cameras, Thomson scattering, X-ray detectors

### Particle-based:

Langmuir probes, neutron detectors & cameras, gamma-ray detectors, neutral particle analyzers, fast ion loss detectors, residual gas analyzers

### **Electromagnetic:**

magnetic coils, flux loops, halo current sensors, interferometry, refractometry, polarimetry, electron cyclotron emission

### Optical:

spectroscopy (visible, UV, VUV, X-ray, CXRS, MSE), H-alpha monitors, visible & IR cameras, Thomson scattering, X-ray detectors

### Particle-based:

Langmuir probes, neutron detectors & cameras, gamma-ray detectors, neutral particle analyzers, fast ion loss detectors, residual gas analyzers

### Calorimetric:

bolometry, calorimetry, thermocouples, calorimetric neutron monitors

Magnetic diagnostics (coils, loops,...) Determine plasma equilibrium and current distribution Used for real-time control of shape and position Estimate stored magnetic energy LIMITATIONS

Magnetic diagnostics (coils, loops,...) Determine plasma equilibrium and current distribution Used for real-time control of shape and position Estimate stored magnetic energy Neutron & fusion product diagnostics (monitors, detectors) Measure fusion power output Diagnose fast ion behavior and losses

Magnetic diagnostics (coils, loops,...) Determine plasma equilibrium and current distribution Used for real-time control of shape and position Estimate stored magnetic energy Neutron & fusion product diagnostics (monitors, detectors) Measure fusion power output Diagnose fast ion behavior and losses Plasma-Facing & operational diagnostics (Langmuir probes, IR, RGAs,...) Monitor wall and divertor temperatures, erosion, and tritium retention Aid in machine protection and safe operation

**Bolometric systems** 

### Measure radiated power from plasma and walls Sensitive to impurity content and detachment behavior

LIMITATIONS

### **Bolometric systems**

Measure radiated power from plasma and walls
Sensitive to impurity content and detachment behavior
Spectroscopy & Neutral Particle Analysis (NPA)
Assess impurity composition and plasma fueling
Measure ion temperature, plasma rotation and current density
Track particle fluxes, ionization, and edge emissions

### **Bolometric systems**

Measure radiated power from plasma and walls
Sensitive to impurity content and detachment behavior
Spectroscopy & Neutral Particle Analysis (NPA)
Assess impurity composition and plasma fueling
Measure ion temperature, plasma rotation and current density
Track particle fluxes, ionization, and edge emissions

### Microwave diagnostics

Electron temperature profiles (ECE) and density profiles (reflectometry) Contribute to plasma position and transport studies

## From echoes and shadows: diagnostics limitations

### Indirect:

Diagnostics measure consequences (light, particles), not direct plasma state

Plasma and machine geometry restrict access and distort signals

### Integrated:

Many measurements are line- or volume-integrated

### Inferred:

Diagnostic interpretation relies on simplified or idealized models

## Phase shifted truths

### **Interferometry limitations:**

- Measures line-integrated electron density → requires inversion and assumptions for profiles
- Sensitive to density fluctuations, path-integrated turbulence
- Assumes known geometry and refractive index model (cold plasma approximation)



JET far IR interferometer, Boboc 2024 PPCF

#### LIMITATIONS SYNTHETIC DIAGNOSTICS INTERPRETATION



## Untangling the radiation web

### **Bolometry limitations:**

- Line-integrated radiated power
   instead of local emissivity
- $\circ$  Interpretation depends on:
  - View geometry
  - Assumptions (for tomography) on emission distribution
  - Detector spectral sensitivity
- Multiple emitters (impurity species, bremsstrahlung, reflections)



ITER bolometry system ©Adam Pataki IPP

#### 10

LIMITATIONS

INTERPRETATION

## Line of sight, layers of assumptions

### Spectroscopy limitations:

 $\circ\,$  Sensitive to:

- Instrument function (spectral/spatial resolution)
- Atomic models (excitation, ionization rates)
- Viewing geometry
- Often assumes coronal equilibrium, may not hold
- Emission often integrated along complex lines of sight



ASDEX Upgrade CXRS system ©Athina Kappatou IPP

## Direct contact, distorted truth

### Langmuir probes limitations:

- Perturbs local plasma (especially in high-temperature regions)
- Interpreted via Debye sheath theory, assumes:
  - Maxwellian electrons
  - Collisionless sheaths
- Mostly used in edge/SOL where assumptions are already strained



KSTAR Langmuir probes

#### LIMITATIONS SYNTHETIC DIAGNOSTICS INTERPRETATION

## Fragmented measurements → coherent understanding

Experimental data: indirect, integrated, inferred Diagnostic signals require:

- Modeling of diagnostic response
- $\,\circ\,$  Inversion to retrieve physical quantities
- $\odot\,$  Cross-validation across diagnostics

Direct interpretation can mislead without careful analysis

→ This is where synthetic diagnostics become essential



IMITATIONS



### Use of integrated models to interpret measurements

### LIMITATIONS SYNTHETIC DIAGNOSTICS INTERPRETATION

### What are synthetic diagnostics?



## Using SD to build, guide and understand

- Build: to optimize the design and performance of the diagnostics
- Guide: to support the development of control algorithms needed for the plasma control system design
- Understand: to support the physics interpretation and analysis, e.g. to predict the diagnostic performance in specific scenario contexts or validate a theoretical assumption

## The spectrum of synthetic diagnostic complexity



## Challenges of synthetic diagnostics

- **Temporal limitations**
- High computational cost
- Spatial constraints
- Incomplete physics of simulation input
- 🗱 Simplified models
- Lack of self-consistency
- Scenario specificity

### Use of integrated models to interpret measurements

## LIMITATIONS SYNTHETIC DIAGNOSTICS INTERPRETATION

## Lesson from a 'simple' diagnostic

- TIP synthetic interferometer: developed for ITER, adapted to WEST via IMAS
- TIP integrates electron density along lines of sight with relativistic corrections
- Good match between METIS-based (0D transport, 1D current diffusion, 2D equilibrium) synthetic signals and WEST measurements
- Edge discrepancies due to optical path and SOL density, not modeled
- $\rightarrow$  question your models!









## Spectrometry on JET

- To follow detachment, electron density and temperature are measured at the strike-point on the LFS divertor target
- <u>Direct</u> values from EDGE2D or SOLPS simulations ≠ <u>line-averaged</u> quantities inferred from spectroscopy
- A better comparison:
   via SD based on Cherab that calculates
   line-averaged density
   (Balmer-δ Stark broadening)
   line-averaged temperature

(Balmer continuum)

Cherab: V Neverov PPCF 2020, M Carr 44th EPS 2017 https://www.cherab.info/ https://www.raysect.org/ INTERPRETATION



## Bolometry on WEST

**Bolometer LOSs** 

LIMITATIONS SYNTHETIC DIAGNOSTICS INTERPRETATION

- WEST full discharge is simulated by 2D fluid transport integrated model
   SOLEDGE3X-HDG for D plasma
- Synthetic bolometer signals (Cherab) don't match WEST experimental data
- Missing impurity physics (no W, no O) leads to underestimation of radiation and poor agreement with experiments!

Giorgiani NME 2019 Romazanov Phys. Scr. 2017 Kudashev AS 2022, JINST 2023



## **Bolometry on WEST**

**Bolometer LOSs** 

- SYNTHETIC DIAGNOSTICS
- W transport added by coupling
   SOLEDGE-HDG + ERO2.0 (+O trace
   fraction to mimic W cooling physics)
- Synthetic signals now closely match experimental measurements
- To reproduce diagnostic signals reliably, simulations must include all relevant physics

Giorgiani NME 2019 Romazanov Phys. Scr. 2017 Kudashev AS 2022, JINST 2023

## Interpret fast ion behavior on JET

- Neutral Particle Analysis detects charge-exchanged neutrals escaping from the plasma and measures fluxes and energy spectra
- Combining integrated modeling with synthetic diagnostic allows to bridge simulation and measurement with high confidence





Varje JINST 2017

LIMITATIONS SYNTHETIC DIAGNOSTICS

**INTERPRETATION** 

# Validating turbulence signatures with FeDoT synthetic reflectometry

**GYSELA** simulation

UFSR measurement (Tore Supra) FeDoT synthetic diagnostic validation



Spontaneous organisation of weak transport barriers: ExB staircase

Dif-Pradalier NF 2017, Hornung NF 2017, Glasser PPCF 2025

Precise turbulence modeling can unlock new diagnostic insights

AGNOSTICS

## Toward a real-time digital twin



Generate synthetic signals from integrated simulations to validate models, interpret data and move toward real-time plasma control

LIMITATIONS SYNTHETIC DIAGNOSTICS

INTERPRETATION

# SOLEDGE-HDG + TWINTOK: full-discharge synthetic view



Courtesy I. Kudashev, F. Schwander, E. Serre, D. Zarzoso, M. Scotto D'Abusco, G. Ciraolo, F. Clairet, G. Dif-Pradalier, N. Fedorczak, P. Ghendrih, S. Hacquin, A. Jamann, P. Abreu, M. Schneider, ITER, SOLEDGE and WEST teams

*Join TWINTOK team: anna.medvedeva@univ-amu.fr* 



2.5 5.0 7.5 10.0 12.5 15.0 v [cm] 

## **Broader perspectives**

Advanced uncertainty quantification → propagating model and diagnostic uncertainties consistently Riva PhD Thesis 2017, Ricci PoP 2011, Coster NME 2022

Data fusion across diagnostics

→ combining signals in Integrated Data Analysis (IDA) frameworks

### Synthetic design studies for future machines

→ predicting diagnostic performance in future scenarios (e.g., ITER, DEMO) Walsh IEEE 2011, Kajita PFR 2019, Meister SOFE 2023

### Machine learning integration

 $\rightarrow$  synthetic datasets support training of AI for interpretation and control

Citrin NF 2015, Brunet FED 2023, Pavone PPCF 2023

AGNOSTICS

INTERPRETATION

• Integrated modeling is essential to understand plasma measurements

- Integrated modeling is essential to understand plasma measurements
- We don't measure plasma
- Measurements are indirect, integrated and inferred

- Integrated modeling is essential to understand plasma measurements
- We don't measure plasma
- Measurements are indirect, integrated and inferred
- Synthetic diagnostics connect model predictions with experimental signals

- Integrated modeling is essential to understand plasma measurements
- We don't measure plasma
- $\circ$  Measurements are indirect, integrated and inferred
- Synthetic diagnostics connect model predictions with experimental signals
- $\,\circ\,$  Synthetic diagnostics help to compare apples to apples

- Integrated modeling is essential to understand plasma measurements
- We don't measure plasma
- $\circ$  Measurements are indirect, integrated and inferred
- Synthetic diagnostics connect model predictions with experimental signals
- $\,\circ\,$  Synthetic diagnostics help to compare apples to apples
- They bridge theory and reality, improve validation and guide ITER-era fusion

- Integrated modeling is essential to understand plasma measurements
- We don't measure plasma
- Measurements are indirect, integrated and inferred
- Synthetic diagnostics connect model predictions with experimental signals
- $\,\circ\,$  Synthetic diagnostics help to compare apples to apples
- They bridge theory and reality, improve validation and guide ITER-era fusion
- $\,\circ\,$  This is actually true