

General Introduction to Integrated Modelling

14th ITER International School

Clarisse Bourdelle

30/06/2025, Aix-en-Provence

1. General Context for tokamak plasma integrated modelling

2. Integrated modelling in tokamak plasmas: what for?

3. Validation of High Fidelity Integrated Modelling: some (nonexhaustive!) illustrations

4. Perspectives towards ITER operation and DEMO design

5. Conclusions

Aiming at burning DT plasmas

 ${}^{2}_{1}D + {}^{3}_{1}T \rightarrow {}^{4}_{2}He(3.5 MeV) + {}^{1}_{0}n(14.1 MeV)$

energy freed by fusing 1g of D-T \equiv energy freed by burning 1 ton of coal

DT fusion power: 1/5th on He (called alpha particle) and 4/5th on 14 MeV neutrons

- **Physics interest**: Burning plasma $P_{alpha} > P_{aux}$ if $Q = P_{fus} / P_{aux}$ means Q > 5
- Net electricity production possible for Q > ~30 and good availability + plasma /dwell time ratio, T breeding, neutron resilient materials, etc

More on neutrons A. Khodak

Aiming at burning DT plasmas in tokamaks

$$nT\tau_E \geq 3 \times 10^{21} keV. s. m^{-1}$$

$$au_E = rac{Plasma \ Energy}{P_{fus} + P_{aux}}$$
 in s

2 strategies:

• large density and short confinement time $n \sim 10^6 \times n_{atmo}$ and $\tau_E \sim 10 ps$ H bomb, inertial fusion

• low density and long confinement time $n \sim 10^{-5} \times n_{atmo}$ and $\tau_E \sim 1 s$

Tokamak: Torus in which plasma of D,T, e confined by helical magnetic field

From today's tokamaks to ITER: a significant gap

JET

Plasma volume 90 m³ DT record $P_{fus}=14 \text{ MW}$ $P_{aux} = 35 \text{ MW}$ Q=0.4 during ~5 s [Kappatou PPCF2025]

WEST

Plasma volume 15 m³ DD operation, Q N/A record pulse length > 1000 s (22 min) [Maget PPCF 2025]

ITER

Plasma volume 800 m³ DT expected P_{fus} =500 MW P_{aux} = 50 MW, Q = 10 > 300 s [Eriksson NF2024]

<u>cea</u>

Integrated modelling validation needed to prepare ITER operation

1. General Context for tokamak plasma integrated modelling

2. Integrated modelling in tokamak plasmas: what for?

3. Validation of High Fidelity Integrated Modelling: some (nonexhaustive!) illustrations

4. Perspectives towards ITER operation and DEMO design

5. Conclusions

Tokamak plasma surrounded by engineering actuators

Toroidal and poloidal field coils current/voltage

Central Solenoid flux inducing current

Auxillary heating systems

Auxillary fuelling/pumping systems

Understand impact of control room actuators on plasma and vice-versa...

Central Solenoid flux inducing Current

Toroidal and poloidal field Coils current/voltage

Auxillary heating and fuelling systems

WEST control room 12/02/2025 Record pulse length >22 min

Plasma physics Multiple orders of magnitude in spatiotemporal scales

Integrated modelling frameworks to orchestrate iterations btw physics modules

Long standing know-how

Source/sink modules

More on infrastructure

O. Hoenen

More on heating

A. Fukuyama

Initial profiles

JETTO Cennacchi G., Taroni A. 1988 ASTRA Pereverzev G.V. et al 1991 CRONOS/METIS Artaud J.F. et al NF 2010 NF 2018 etc [F.M. Poli PoP 2018, C. Bourdelle PPCF 2025]

transport PDE

solver $t \rightarrow t + \Delta t$

WEST

0.2

0.4

0,6

0.8

1. General Context for tokamak plasma integrated modelling

2. Integrated modelling in tokamak plasmas: what for?

3. Validation of High Fidelity Integrated Modelling: some (nonexhaustive!) illustrations

4. Perspectives towards ITER operation and DEMO design

5. Conclusions

Multiple goals for integrated modelling: steady-state, whole pulse modelling, tests of controllers, inform design of future device

<u>_!</u>

cea

Various levels of non-linear couplings, some plasma parameters are evolved some kept fixed : current+heat only with density and momentum fixed, current+heat+particle only, etc,
Various boundary conditions: pedestal top, separatrix, divertor targets
Various model fidelity: empirical scaling, verified reduced physics model etc

More on pedestal physics integration T. Luda BC at divertor/wall S. Wiesen More on validation/prediction J. Garcia

Validation of High Fidelity Integrated Modelling: some (non-exhaustive!) illustrations

On each validation example you will find:

In purple information on: initial, boundary conditions, on predictive vs interpretative quantities.

As well as the **physics question** that was addressed by the modelling.

And the **understanding** gained thanks to nonlinear couplings enabled by integrated modelling.

Train your critical eye! as all integrated modelling results are only addressing a time frame of a plasma pulse, a radial zone, and do not evolve all quantities... is the time frame sufficient? the radial zone ? The evolved physics quantities vs the fixed ones?

I am expecting... QUESTIONS!

Maximizing the ion temperature in an electron heated plasma

Non-linear couplings:
 j, T_e & T_i : NN-QuaLiKiz, equipartition, ohmic, P_{rad} up to ρ=1 (L mode)
 Fixed quantities:

n_e and plasma compo., LHCD source profile shape, separatrix values

Question: how T_i saturation observed in electron heated W7X, AUG, WEST extrapolates towards ITER?

Understanding: if τ_{ei} is longer than the $\tau_E T_i$ saturates but in ITER shorter τ_{ei} and longer τ_E , hence higher $T_i(0)/T_e(0)$ ~0.75

Manas NF 2024

local nature of the plasma response to 'cold pulses': key interplay T and n

• Non-linear couplings: j, $T_e T_i \& n_D n_C$: TGLFsat1, equip., ohmic, P_{rad} , NBI/ECRH up to ρ =1

• Fixed quantities: plasma compo, sep. values

Question: fast increase of central T_e in response to C entry / edge T_e drop, proof of 'non-local' turbulence?

Understanding: C entry, $\frac{\nabla n_{eq}}{n_{eq}}$ reduction in core, reduction of turbulence driven by TEM, T_e core increase. Dynamics of central T_e captured by **local turbulent models** in integrated modelling framework.

W-accumulation avoidance : role of ICRH vs NBI heating

- Non-linear couplings:
 j, T_e T_i n_D n_{Be} n_{Ni} n_W V_{tor}: QuaLiKiz, P_{rad},
 NBI, ICRH
- Fixed: sep. values, <u>ETB ad-hoc</u> to match T_{ped}, n_{ped}. W, Be, Ni total content

Question: actuator to avoid radiative collapse in presence of W in NBI heated pulses

Understanding: enhanced outward turbulent particle transport \rightarrow flater n_i core profile \rightarrow reduced W neoclassical inward transport \rightarrow delayed radiative collapse

Full radius ohmic lp ramp-up : better prediction if TCV density self-consistently evolved

- **Non-linear couplings:** ٠ j, T_e T_i & n_p n_c QuaLiKiz / TGLFsat2, equipartition, ohmic, neutrals feedback on nl **up to** ρ =1 I_p ramps 70 to 300 kA
- fixed quantities: sep. values

Question: validity of reduced turbulent models up to LCFS in ramp up? Crucial to prepare operation

Understanding: in C envt, reliable I_p ramp modelling up to ρ =1, predictions better with selfconsistent n_{D} and n_{C}

Metrics averaged over $d = \sum_{\rho=sep}^{axis} 2 \left| \frac{d_{fit}^{\rho} - d_{model}^{\rho}}{d_{fit}^{\rho} + d_{model}^{\rho}} \right|$ multiple radii/times

Large-scale validation thanks to automated extraction, fitting, setup & execution

• Non-linear couplings: j, T_e T_i n_D NN-QuaLiKiz

Fixed: from database NBI, Z_{eff}, P_{rad}, exptal measurements at ρ=0.9

Question: for which range of parameters model prediction best/worse (NN, QuaLiKiz, TGLF), to guide future model devt needs

Understanding: can we do better than empirical scaling laws? on-going

[A. Ho EPS/TTF 2023, C. Bourdelle PPCF 2025]

More on synthetic diagnostics for validation A. Medvedeva

Metrics on T_e , Ti and \underline{n}_e JET

 $M = \sqrt{\frac{1}{6} \left(M_{T_e,3}^2 + M_{T_i,3}^2 + 4M_{n_e,3}^2 \right)}$

1. General Context for tokamak plasma integrated modelling

2. Integrated modelling in tokamak plasmas: what for?

3. Validation of High Fidelity Integrated Modelling: some (nonexhaustive!) illustrations

4. Perspectives towards ITER operation and DEMO design

5. Conclusions

Burning plasma: coupling btw profiles and source $P_{fus} \propto n_{fuel}(0)^2 T_i(0)^2$ +10% on $T_i(0)$ & $n_{fuel}(0) \rightarrow$ +40% on P_{fus} EU-DEMO A=2.8

- Non-linear couplings: ٠
- j, T_e & T_i, T_{ped} scaling, equip., oh., P_{rad}, P_{fus}
- core: ad-hoc fixed χ_{eff} matching H_{98(y,2)}
- Ped and sep: scalings -
- Fixed: n_e shape, f_{Greenwald}, plasma compo., ECRH ٠

Question: can we predict P_{fus} using τ_{F} scaling laws?

Understanding: Same energy content, but different profiles, hence different P_{fus}. Need physics based turbulent transport models for Q>5 prediction.

[C. Bourdelle PPCF 2025]

cea

METIS

Illustration of importance of physics based understanding in burning plasma: impact of β on turbulence (w/o fast particles)

- Non-linear couplings:
- j, $\textbf{T}_{e}~\textbf{T}_{i}~\textbf{\&}~\textbf{n}_{T}~\textbf{n}_{D},$ equip., ohmic, \textbf{P}_{rad} , NBI , \textbf{P}_{fus}
- Core, ρ <0.93 **TGLFsat2, different low** $k_{\theta}\rho_s$ **settings**
- Ped: n_{ped} pellet feedback P_{ped}: ITER-EPED scaling
- n_{sep} T_{sep}, SOLPS-ITER scaling
- Fixed: plasma composition, ECRH, V_{tor}

Question: can we predict turbulent transport at high β using physics based reduced el-mag model ?

Understanding: Small changes on lowest k modes at high β (KBM) impact profiles ρ >0.6, hence P_{fus} need higher fidelity code verification at high β (on-going)

cea

[C. Bourdelle PPCF 2025]

How to close the physics gaps? go up the hierarchy of models and improve model reduction

More on high fidelity gyrokinetic M J. Dominski D

More on high fidelity MHD D. Hu

1. General Context for tokamak plasma integrated modelling

2. Integrated modelling in tokamak plasmas: what for?

3. Validation of High Fidelity Integrated Modelling: some (nonexhaustive!) illustrations

4. Perspectives towards ITER operation and DEMO design

5. Conclusions

conclusions

Guidlines for a critical eye on integrated modelling work:

- Which transported quantities, non-linearly iterated, vs fixed quantities?
- Where are the boundary conditions?
- Level of the reduced models used? verified against higher fidelity codes?

Progressing towards full discharge modelling from engineering control room parameters:

- In today's tokamaks
 - Successful OH/L mode full radius, incl. I_p ramp up. H mode with some empirical help in pedestal and at separatrix using engineering parameters better than scaling laws
 - To do: extend validation using more surrogate models and more automation, transfer understanding to Pulse Design Tools
- Towards burning plasmas: even more non-linear $P_{fus} \propto n_{fuel}(0)^2 T_i(0)^2$ and knowledge gaps to prepare operation/controller: go up the hierarchy to improve model reduction for core transport at high β , Alpha redistribution and Turbulence/MHD interplay, L-H and H-L transition, Pedestal transport, SOL transport of fuel, impurities compression, He ashes

For integrated modelling you need: Integrated physics codes Integrated understanding and validation and an integrated team! To the EUROfusion integrated modelling team I am coordinating since 2020:

[C. Bourdelle PPCF 2025]

