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The Why and How of "fast" integrated modelling

1● Use-cases for fast simulation

● (very) brief primer on machine learning and neural nets

● Fusion examples of ML-accelerated applications
○ Superficial overviews with links for further reading
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Next generation of tokamak experiments aiming for net fusion gain

ITER: Cadarache, France, standard 5T field
SPARC, Commonwealth Fusion Systems (CFS), 

high-field-superconductors. ~12T 

Acknowledgement to ITER Organization Acknowledgement to Commonwealth Fusion Systems
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Key issue: present-day physics models too slow for routine 
simulations used for experiment prediction and interpretation

Leap from present-day experiments to reactors requires leap in simulation capabilities

Reduce costs and risks with simulations for

● Experimental preparation including inter-shot
● Performance optimization while avoiding constraints
● Model-based controller design

In next generation devices, fast and accurate simulation a 
prerequisite for pulse design.

Also key:
● Uncertainty Quantification of simulation outputs
● Calibrating physics models with data when available
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Integrated modelling inherently multiscale and multiphysics

Multiple orders of magnitude in 
spatiotemporal scales between 
relevant physics processes

Magnetic equilibrium

Plasma collisions

Magnetohydrodynamics

Heating and fuelling

Plasma turbulence

Atomic and molecular interactions

Plasma material interaction

…

…
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Modelling fidelity and tractability hierarchy. 
Pragmatic modelling demands model reduction

Simulation 
Class

Method Fidelity 
level

Compute
burden 

Advantages Challenges

Direct numerical 
simulation

Coupling high 
fidelity models

High Massively 
parallel and 
expensive 
(exascale)

Ultimate ground truth 
(numerically)

Not pragmatic 
for most use 

cases

"Standard"
integrated 
modelling

Plasma 
transport PDEs 

+ 
coupled 
reduced 
models

Variable 
(depends on 

quality of 
reduced 
models)

Hours to 
weeks on 

single 
compute 

node

Suitable for experimental 
interpretation and 

extrapolation
Community workhorse. 
Lots of experience and 

models available

Legacy burden.

Tractability and 
accuracy are 

conflicting 
constraints

"Fast" 
integrated 
modelling

Plasma 
transport PDEs 

+ 
coupled 

surrogate 
models

Variable 
(depends on 

quality of 
surrogates)

Faster than 
realtime to 

minutes 

Suitable for optimization 
and controller design 

applications.

Surrogates can learn 
higher fidelity models 

than “standard”

Need to 
develop 

collection of 
learned 

surrogates + 
appropriate 
framework
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Key method for integrated modelling speed is incorporation of learned 
ML-surrogates (e.g. neural networks) of physics components. More on this later!

Magnetic 
equilibrium

Edge Transport Barriers 
(H-mode pedestal)

Neutral Beam Injection 
and Current Drive

Plasma turbulence
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Many-query computational workflows where fast-and-accurate simulation is vital:
1. Scenario design and optimization

Must be fast for multiple 
iterations!

Physics Simulator

Human or automated

Physics operator

Measures performance 
and constraints. How 
much fusion power? 
Did the wall melt? 

Scenario evaluator

Actuator inputs:
e.g. current and heating
 waveforms

Scenario results

Feedback to 
operator
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Many-query computational workflows where fast-and-accurate simulation is vital:
2. Uncertainty quantification

More pedestal 
pressure

More impurities

Optimal Scenario

Less impurities

Less pedestal 
pressure

More pedestal 
pressure

Less pedestal 
pressure

For single prediction for optimal trajectory is insufficient. Need "error bars" of simulation

● Output distributions over physics 
uncertainties

● Inclusion (where possible) of impact 
of "off-normal-events"

● Quantify tradeoffs between 
scenario performance and risks

● Various techniques
○ Spawning multiple runs
○ Differentiable simulation
○ Surrogate models output 

uncertainties
○ … 10



Many-query computational workflows where fast-and-accurate simulation is vital
3. Controller design and testing

ControllersSimulation

(Synthetic) diagnostics

Actuators

"Flight simulation". The controllers should not be able to tell if input comes from 
simulation or real thing

If simulation is fast, can run many times to design and test advanced controllers

If diagnostics are fast, more sensor information is available, unlocking better control 
schemes. ML can help with realtime diagnostics.
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Many-query computational workflows where fast-and-accurate simulation is vital:
4.Large-scale validation and calibration: Learning from data

Experimental databases Simulators
Simulation setup, e.g. 
actuator waveforms

Run simulations, 
including UQ

Compare 
simulations and

data

Improve simulations

Improve simulations through combination of better physics models and learned parameters from data.
Hybrid physics+data learned models may generalize better to new regimes than pure data-learned models
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(brief!) primer on Machine Learning (ML): a subset of algorithms that improve 
through experience without explicit instructions

Problem class

Supervised learning (labelled data)
● Regression
● Classification

Unsupervised learning
● Clustering
● Dimension reduction

Reinforcement learning
● Map state to action 

based on rewards

Example research questions

I have done lots of turbulence calculations before. 
Can I learn from them and replicate them faster? 
(e.g. van de Plassche PoP 2020)

What different classes of disruption does my data 
describe? (e.g. Murari NF 2021)

I have a target plasma shape. Based on present 
state, which actuators to tweak to get there and 
stay there? (e.g. Degrave Nature 2022) 
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Examples of supervised learning use-cases for pattern recognition and regression
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Neural networks (in various forms) are specific implementations of nonlinear 
mappings for ML applications. Essentially, a very powerful and general fit

● Each step of the way are linear + nonlinear mathematical operations with (many!) free weights
● Based on a large pool of examples (training data), weights are modified to maximize

match to training data. Global optimisation problem. Tour-de-force of calculus
● Immense progress in past 15 years due to:

○ Ability to handle big data
○ Advances in compute power (e.g. multinode GPU/TPU accelerators)
○ Improved optimisation algorithms, innovative network topologies
○ Appropriate software frameworks abstracting away complexity (e.g. JAX, PyTorch)

15



Integrated tokamak simulation is a multiphysics system with complex emergent 
behaviour. "Fast and accurate" constraint applies for each physics component
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1. Physics (reduced order) model verified against 
high-fidelity simulations and validated against 
experiments

2. Use HPC to generate large datasets of model 
calculations in relevant tokamak parameters

3. Neural networks used to learn the model 
nonlinear input-output static map, based on the 
training set

4. Use the trained NN as a fast surrogate model for 
tokamak simulation. Typically orders of 
magnitude faster than original model

Basic surrogate modelling recipe the same for different underlying physics 
components in integrated modelling, using standard supervised learning techniques
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Examples of supervised learning use-cases for faster integrated modelling
1. Pedestal height and width

From Meneghini et al, NF 2017

● Learned surrogates of well-established EPED 
model [Snyder PoP 2009] for pedestal pressure 
and width.

● Standard multi-layer-perceptron (MLP) topology 
(more on this later)

● Accelerates H-mode modelling

EPED-NN: Menighini et al Nucl. Fusion 2017
EuroPED-NN: Panera Alvarez et al, PPCF 2024 
                           Gillgren et al, NF 2022
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Examples of supervised learning use-cases for faster integrated modelling
2. Surrogate modelling of reduced turbulence model databases (deep dive later)

Comparing reduced turbulence model QuaLiKiz and Qualikiz-NN (QLKNN) for a test JET scenario
JINTRAC-QuaLiKiz:                          simulation took 4 hours with 16 cores
JINTRAC-QLKNN-jetexp-15D:      simulation took 5 minutes with 1 core (and QLKNN not the bottleneck)

TGLF neural networks: Meneghini NF 2017, NF 2020
QuaLiKiz neural networks: Citrin NF 2015, van de Plassche PoP 2020, Ho PoP 2021, Hamel 2025
Gaussian process regression of GS2 (microtearing): Hornsby et al PoP 2024
NN regression of quasilinear GENE for ITER: Citrin et al PoP 2023 19



Examples of supervised learning use-cases for faster integrated modelling
3. Heating and current drive

For heating codes, inputs and outputs are 1D profiles. Techniques for dimensionality reduction (e.g. analytical 
parameterizations, Principal Component Regression) used to reduce surrogate input + output vector sizes.

● TORIC ICRH heat deposition surrogates: random forests, MLPs, Gaussian Process Regression
○ Sanchez-Villar et al, PoP 2025, NF 2024, Wallace et al APS 2024

● NUBEAM neutral beam injection (NBI) surrogates: Boyer NF 2019, Morosohk FED 2021, Wang FED 2023
● TORBEAM ECRH surrogate: Rothstein PPCF 2025

Sanchez-Villar PoP 2025

TORIC vs surrogates for ICRH 
electron deposition

NUBEAM vs surrogate for NBI ion 
energy deposition at different times
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Examples of supervised learning use-cases for faster integrated modelling
4. MHD prediction for disruption predictions and integrated modelling

● Learned surrogate of tearing mode predictions
○ Disruption precursors: to be avoided!

● Hybrid data and model driven approaches promising
for disruption prediction [Piccione NF 2020, DECAF]

● MHD predictors used in RL schemes for tearing mode
avoidance [Seo Nature 2024]

Seo Nature 2025

Tearing mode predictors
Seo et al, IJCNN 2023
Xu et al, PoP 2024

MHD identification
Long NF 2025
Kong PPCF 2023
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Supervised learning can also accelerate diagnostics, providing more information 
to controllers and enabling development of more robust advanced control

ML can accelerate diagnostic analysis for 
controllers, and high-throughput scientific 
analysis

● Tomographic inversion
○ Soft X-rays, deconvolutional NN 

(1D chords -> 2D image)
Ferreira et al FST 2018. 
Factor 100 million speed up!

○ Multispectral imaging with U-Nets, 
van Leeuwen et al PPCF 2025

○ Gaussian Process Tomography for 
error estimates (Matos RSI 2020)

● Equilibrium reconstruction
○ EFIT-NN, NF 2019
○ Eqnet, Wai NF 2022
○ Rutigliano PPCF 2025

L. van Leeuwen, PPCF 2025

Machine learning enhanced tomographic reconstruction of 
multispectral imaging on TCV with U-Nets
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Example of RL interacting with integrated modelling for scenario optimization 
+ control. Here focusing solely on the magnetic equilibrium control problem

Control plasma shape and position 

● Plasma subject to pressure 
gradient and magnetic fields forces

● External actuators:
magnetic coil set

● Partial state of plasma inferred 
from magnetic sensors

● Fast magnetic equilibrium codes 
available and can be used as 
environment for training agent with 
RL (more general than traditional 
controllers)

Acknowledgement to F. Felici
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The learning setup

Acknowledgement to F. Felici

Algorithm details
● MPO: off-policy RL algorithm

○ Learner (critic) is large recurrent network (LSTMs) and learned the value (Q) function generated 
by actors interacting with simulation environment with policy π

○ Actors iteratively learn policy π by sampling actions from the learned Q function
○ Policy is simple MLP for fast realtime implementation. 19 degrees of freedom (inputs) for TCV

● Distributed implementation: many actors in parallel, results fed to replay buffer continuously for learning 
● Actor (policy) sees only synthetic diagnostics. Critic can have access to full state 24



Result - demonstration shot

Acknowledgement to F. FeliciDegrave, Felici et al., Nature 2022 25



Various plasma shapes controlled in TCV with RL

Acknowledgement to F. FeliciDegrave, Felici et al., Nature 2022

● Next step: extending 
simulation environment 
with more multiphysics 
integrated modelling 

● Multiphysics simulation 
with multiple ML- 
surrogates can provide 
sufficient speed and 
accuracy.

● Appropriate software 
frameworks help. More 
on this later.

26



Further topics out of scope of this lecture

Neural operator networks

Learn PDE solutions from models or data, and make faster predictions, examples:
● Fourier Neural Operators emulating MHD simulations of plasma blobs, and time-series 

prediction of experimental data [Gopakumar et al, NF 2024]
● Neural Green Operators for PDE acceleration [Melchers et al, https://arxiv.org/pdf/2406.01857]

Bayesian Optimization Workflows

When optimizing an expensive "black box" function, e.g. gradient-flux matching for a nonlinear 
gyrokinetic code, build cheap surrogates "on-the-fly" and use those to accelerate optimization

● PORTALS framework , Rodriguez-Fernandez et al NF 2024. Key technique for enabling 
ultra-high-fidelity integrated modelling, using expensive turbulence (and other) models.

Further reviews
Anirudh et al, "2022 review of data-driven plasma science",  doi: 10.1109/TPS.2023.3268170
Pavone et al, 2023, "Machine learning and Bayesian Inference in Nuclear Fusion Research: an overview", doi: 10.1088/1361-6587/acc60f
Schissel et al, 2025, "Digital Twins for Fusion Research", doi: 10.1063/5.0273586 27



Deep-dive: A neural network surrogate for tokamak turbulence

2
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Build datasets of verified reduced order models, or mixed multifidelity 
datasets with high and reduced fidelity, and fit ML-surrogates to them

Bridging ~12 orders of magnitude in calculation speed

Expensive nonlinear 
turbulence modelling.
~100 million CPU hours
per full-pulse sim
e.g. GENE [Jenko PoP 2000]
        CGYRO [Candy JCP 2016]

Reduced order physics
model. Quasilinear approximation
~100 CPU hours per full-pulse sim
e.g. QuaLiKiz [Bourdelle PPCF 2016]
        TGLF [Staebler PoP 2007]

Learned surrogate models.
Realtime capable.
Shallow fully connected NNs 
typically sufficient

29



Approaches to training set generation:
1. Brute force lattice bounded by extremes found in experiments

Dataset used in QLKNN10D model
 van de Plassche PoP 2020: 3.108 QuaLiKiz runs QLKNN10D dataset on Zenodo:

doi.org/10.5281/zenodo.349065

More recent QuaLiKiz dataset 
● ~109 points with up-to-date QuaLiKiz version
● Includes impurity density information and data 

relevant in L-mode near-edge

https://zenodo.org/records/8017522
https://zenodo.org/records/8106431

Used to fit new QLKNN_7_11 model [Hamel 2025]
https://github.com/google-deepmind/fusion_surrogates

● Lattice trainings sets can generalize to tokamak parameters outside of present-day devices
○ At the cost of reduced input dimensionality due to "curse of dimensionality"

● We clearly know beforehand when NN is extrapolating
● In practice, better not to uniformly fill lattice, but to generate in parallel to model training and stop 

generating when new data no longer informative 30



Approaches to training set generation:
2. Restrict training set to experimentally relevant sub-space

Aaron Ho Nucl. Fusion 2019
Aaron Ho PoP 2021

Database of ~2000 JET shots, ~7 timeslices each

Automated data fitting pipeline with Gaussian 
Process Regression (GPR) 

Sampled for reduced turbulence model inputs. 
Enrich by varying gradient quantities with fit errors

~ 21 million input-output mappings

● Includes more physics: plasma rotation, impurity species, additional magnetic geometry inputs
○ Caveat. Sampling only space populated by existing experiments restricts exploration of new

regimes and devices.

● Use methods for extrapolation detection, e.g. analysing variance of ensemble of networks, noise contrastive priors.

● In practice: best to use Active Learning techniques for efficient sampling of datapoints, especially key
for expensive ground-truth evaluation. See Zanisi et al NF 2024 for QLKNN active learning demo. 31



Simple feed forward neural networks sufficient for quasilinear transport model 
surrogate generation: FFNNs, a.k.a. "Multiple Layer Perceptrons" (MLPs)

INPUT (at local plasma position)
- Temperature gradient
- Density gradient
- Magnetic field geometry
- Ion to electron temp ratio
- etc.

OUTPUTS
Particle fluxes
Heat fluxes
etc.

Optimize weights 𝑤𝑖,𝑗 by minimizing cost function: C = ∑N (𝑡𝑁 − 𝑦𝑁)2 + 𝜆 ∑ (𝑤ij)
2

𝑡𝑁 are target values from generated dataset (“training set”)
𝜆 is the (L2) regularization factor.

Additional advantage: provides an analytical formula with analytical derivatives.
Turbulent flux derivatives with respect to inputs important for implicit timestep PDE solvers and trajectory optimization
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Incorporate prior physics knowledge into NN training: 
e.g. tokamak turbulence transport has sharp “critical gradient threshold”

● Global statistics (MSE) can be less important than local features (critical gradient instability threshold)
● Same threshold for all transport channels (ion heat, electron heat, particles) essential
● Achieved by customising training targets and optimisation cost function with physics constraints

33



Various underlying instability "modes" combine to describe turbulent 
fluxes. Each have their own thresholds and can be separated in output

● Ion Temperature Gradient (ITG) - most important for reactor-relevant regimes
○ Driven by ion temperature gradient
○ Leading transport: ion heat flux
○ Low frequency

● Trapped Electron Modes (TEM)
○ Driven by electron density gradient
○ Leading transport: electron heat flux
○ Intermediate frequency

● Electron Temperature Gradient (ETG)
○ Driven by electron temperature gradient
○ Leading transport: electron heat flux (does not drive ion heat flux or particle flux)
○ High frequency

● Modes not modelled by QLKNN
○ Micro-Tearing Modes (MTM)
○ Kinetic Ballooning Modes (KBM)

34



Critical gradient model

● All fluxes caused by a given mode are null below a 
certain threshold of the driving gradient

● This needs to be enforced in the surrogate model
● QLKNN trick: 

○ Predict leading flux for each mode
○ Non-leading flux are predicted as a ratio
○ Enforces that zero leading flux –> zero secondary fluxes

Critical 
Gradient

35



Single neural network with multiple outputs. Turbulent fluxes 
are done in post-processing combining these outputs

● itgleading (ion heat flux - ITG)
● itgqediv (electron heat flux ratio - ITG)
● itgpfediv (electron particle flux ratio - ITG)
● temleading (electron heat flux -TEM)
● temqidiv (ion heat flux ratio -TEM)
● tempfediv (electron particle flux ratio - TEM)
● etgleading (electron heat flux - ETG)
● gamma_max (maximum growth rate on ion-Larmor-radius-scales, 

                       to be used for rotation shear turbulence suppression model)
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Training and Evaluation

● Trained on MSE and stability loss
● Stability loss enforce zero flux in the stable region
● Output leading fluxes are clipped to zero at inference time (no negative 

leading fluxes)
● Alternatively, we can incorporate physics in the network structure

37



Alternative: Embed physics in the network structure

38
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Evaluation

● Best loss is not necessarily the best model for integrated modelling
● Integrated modelling involves an iterative PDE solver
● Expectation of smoothness in the output domain
● Speed is also a consideration
● We ran full integrated modelling (TORAX) simulations as part of validation
● Metrics

○ Smoothness of spatial and temporal temperature profiles
○ Number of TORAX nonlinear solver iterations
○ Total simulation time

● Post-training evaluation comparing dozens of scenarios 
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Sample result of new QLKNN_7_11 surrogate, compared to ground truth and 
previous best surrogate

Improved agreement to ground-truth compared to previous general QuaLiKiz surrogate QLKNN10D
in multiple regimes: H-mode, L-mode, ITER-like, SPARC-like, up to LCFS, various collisionalities

QLKNN_7_11 model released open-source: https://github.com/google-deepmind/fusion_surrogates/
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Naive NN fit with RMS only leads to poor results in integrated modelling
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Applications: QLKNN-jetexp-15D model demonstrated current 
ramp-up optimization of a JET high-performance scenario in Tritium

● Good agreement with deuterium-reference in time-dependent simulation from early ramp-up
 

● Electron temperature hollowing in inner-core predicted. Worsened hollowing with heavier isotope also predicted
○ Can be deleterious for operations. Leads to plasma current profile that destabilizes MHD -> disruption

● Modelling predicted necessary increase in density in tritium scenario for controlling the temperature profile, in line with 
subsequent experiments. Modelling shed light on underlying mechanisms [A Ho APS invited 2021, Nucl. Fusion 2023]

● Each run ~2 hours instead of 2 weeks! Learned surrogate a key enabling factor in reaching scientific goals
42



Applications: 
Optimization demonstration for a ITER high performance scenario

● QLKNN-hyper-10D implemented within RAPTOR 
control-oriented tokamak simulator

● Stationary-state solver in RAPTOR demonstrated ITER 
high-performance scenario optimization [S. van Mulders 
Nucl. Fusion 2021]

● Constrained optimization for maximal fusion power, 
scanning over microwave heating source launcher angles

○ Leads to modification in plasma current profile
○ Impacts turbulence and confinement 

● Optimization routine delivers solution in few minutes. 
Would take weeks/months with full QuaLiKiz
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Modern simulation frameworks utilizing ML-surrogates for optimization and control

3
44



Confidential - Google DeepMind

TORAX is our differentiable tokamak core 
transport simulator built in Python using 
JAX, solving for core temperatures, density, 
and current diffusion
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TORAX motivated by requirements for pulse simulation, planning, and 
controller design tasks 

🚀   Fast and accurate forward modelling 

📐   Differentiable for accurate nonlinear PDE solvers, gradient-driven optimization and 
       data-driven model parameter identification

🤖   Easy incorporation of physics model ML-surrogates; higher fidelity simulation without sacrificing speed

📦 Modularity for coupling within various workflows, additional physics models, and controllers

📈 Scalable for large-scale validation and UQ
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TORAX motivated by requirements for pulse simulation, planning, and 
controller design tasks 

Builds on ideas developed over 
many years in the fusion 
community for tokamak pulse 
planning, optimization, and 
control:

RAPTOR [Felici PPCF 2012]
METIS [Artaud NF 2018] 
COTSIM [Pajares NF 2021]
FENIX [Fable PPCF 2022]

But in Python using JAX which delivers new 
capabilities and facilitates others

● Autodifferentiation, fast compiled 
code, easy ML-surrogate coupling

● Aimed for SciML workflows with 
hybrid model + data-driven simulation 
and optimization. 

See also POPSIM [Wang, Nature. 
Comm. Physics. 2025]

● Portable, modular, extensible

47



JAX enables fast compiled and differentiable simulation with NumPy-like API

● Python library originally developed by Google, is "NumPy on the CPU, GPU, TPU" (https://jax.readthedocs.io/)
○ Originally developed for AI/ML. Increasing applied for scientific computing.

● Uses an updated version of Autograd to automatically differentiate NumPy-like code
○ Automatic transformation of functions to their analytic derivatives

● Uses XLA (Accelerated Linear Algebra) JIT (just in time) compiler for speed
○ Transforms functions to fast compiled versions
○ Abstracts away parallelization
○ Same code can run seamlessly on CPU or accelerators

jax.readthedocs.io 48



Usages
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Basic introduction to the Python JAX library

Simple autodiff example

 jnp is "JAX NumPy"; grad is imported from JAX

Similarly 
● jax.jit transforms functions to compiled version
● jax.vmap transforms function to parallelized version

50



TORAX governing equations: set of 1D flux-surface-averaged nonlinear transport PDEs

Ion and electron heat equations

Electron density equation

Current diffusion equation

● Moment equations of underlying kinetic equations
○ Toroidal symmetry + flux-surface averaging reduces to 1D
○ Timescale separation of turbulence, sources: function calls of 

reduced order models ideally verified against high-fidelity

● ψ (poloidal magnetic flux) boundary condition options
○ Neumann (prescribed total current)
○ Dirichlet for next timestep (edge V_loop)

● Any subset of these equations are evolved

● Non-evolved profiles, initial conditions, source parameters, etc, set by
○ Config (xarray, numpy, python primitives, IMAS)
○ Other models, controllers, in between PDE steps within

flexible composable workflows using TORAX API
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Spatial discretization: finite-volume-method with bespoke JAX fvm package

● TORAX JAX 1D finite-volume-method package inspired by FiPy1 and uses similar API
○ Constrained to solving convection-diffusion equations

● For (particle) convection, power-law α-weighting scheme based on Péclet number

● Constructs nonlinear/linear systems of equations for solvers based on solver method
○ Predictor corrector: implicit PDE where nonlinearity of PDE coefficients treated by 

fixed point iteration 
○ Newton-Raphson nonlinear solver: iterative root finding for PDE residual 

1 https://www.ctcms.nist.gov/fipy/ 52



Newton-Raphson illustration: simple example with heat diffusion

Fully implicit simple nonlinear diffusion equation

Discretize and define nonlinear system
of equations to be solved (residual)

Newton-Raphson: starting from initial guess of Told 
(e.g. Tk), iteratively solve linear system for Tnew , until
R(Tnew,Tk) within tolerance

● TORAX has simple linesearch to ensure 
good Newton steps (physical Tnew), as well 
as Δt backtracking if no convergence

All the physics goes into the residual function, 
and the Jacobian is JAX magic ✨ 

jacobian = jax.jacfwd(residual)
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Presently implemented physics models/couplings (non-exhaustive list)

● ML-surrogates where available
○ Turbulence: QLKNN [van de Plassche 2020, Hamel 2025*]
○ ICRH heating: TORIC-NN for SPARC [Wallace APS 24]

● Fast analytical models where appropriate
○ Bootstrap current, neoclassical transport, ECCD
○ Semi-empirical transport models (e.g. BgB)
○ Mavrin polynomial fits to ADAS for line radiation, Bremsstrahlung
○ Fusion power, ion-electron collisional exchange, Ohmic power
○ Sawteeth

● Pre-calculated sequence of geometry inputs: wrappers for 
CHEASE, MEQ, EQDSK, (IMAS)

● Collaborations key
○ TORAX aims to be a natural target platform for

community-wide ML-surrogates  
■ ONNX data storage for portability

● https://torax.readthedocs.io/en/v1.0.0/interfacing_with_surr
ogates.html 

○ Design focus on modularity
* https://github.com/google-deepmind/fusion_surrogates (recent release) 54

https://torax.readthedocs.io/en/v1.0.0/interfacing_with_surrogates.html
https://torax.readthedocs.io/en/v1.0.0/interfacing_with_surrogates.html


TORAX open-source with permissive Apache 2.0 license

● Open source launch (v0.1.0) in June 2024
○ https://github.com/google-deepmind/torax
○ Notebook tutorials available
○ Latest release: v1.0.3

● Technical report on v0.1.0 + up-to-date online documentation
○ https://arxiv.org/abs/2406.06718
○ torax.readthedocs.io

On PyPI: pip install torax 
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Verification: TORAX vs RAPTOR agreement for ITER-like cases

Modeling settings:

● ITER inspired params
● Nonlinear Newton-Raphson solver
● Heat transport + current diffusion
● 20MW heating: modulated
● Constant transport coefficients
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Verification: TORAX vs RAPTOR agreement on SPARC H-mode scenario

* K.L. van de Plassche et al., PoP 2020
Δt=0.2s: RAPTOR walltime: ~70s , TORAX walltime: ~7s

Modeling settings:

● SPARC full-pulse scenario 
[A. Teplukhina CFS]

● Nonlinear Newton-Raphson solver
● Heat transport + current diffusion
● Sequence of magnetic equilibria
● 11MW heating power
● ML-surrogate turbulent transport 

model (QLKNN10D*)
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Initial applications and collaborations

CFS MOSAIC Pulse Planning Workflow:
● GSPulse [Wai APS24]. Optimizes coil currents over full target pulse trajectory
● TORAX for internal plasma dynamics

Image from Devon Battaglia

ITER Pulse Design Simulator w/CEA + Ignition 
Computing

● Coupling to IMAS underway [Schneider, 
Bellouard, Sanders, van Vugt]

UKAEA
● Progress in preparing TORAX for STEP 

simulation and benchmarking with JINTRAC 
[T. Brown, L. Zanisi]
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TORAX-GSPulse convergence for self-consistent transport and geometry 
within the SPARC Pulse Planning Workflow running in MOSAIC

SPARC L-mode D pulse: 10 MW ICRH, single null

Anna Teplukhina [CFS]
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Running TORAX at scale for Uncertainty Quantification

ITER-like hybrid scenario 
parameter variations

● Pped = [75 - 108] kPa 

● nped = [0.5 - 0.72] 1020 m-3

● Zeff = [1.5-2.5]

● nW/nNe = [5e-4 - 2e-3] 

● ECRH width = [0.064-0.1] ρnorm 

● Bootstrap multiplier = [0.9-1.1]

● chiion,inner = [0.25 - 1] m2/s

Q = 6.8 ± 2.9 

~ 80,000 simulations. ~30 mins on ~200 cores

60



Roadmap: towards higher physics fidelity and pulse planning applications

Physics model developments

➢ Extended physics
○ Coupling to reduced edge 

models for heat-exhaust
○ Rotation + ExB shear
○ Multi-ion + impurity transport

➢ Engaging with wider community on 
improved ML-surrogates

○ Turbulence
○ Pedestal
○ Magnetic equilibrium
○ Heat/particle sources
○ Plasma edge + wall

Improved numerics+engineering

➢ Demonstrate "full-sim" 
differentiable capabilities with 
flexible API

➢ Demonstrate large-scale batch 
simulations on GPU for 
optimization, UQ, 
inverse-problem solving

Validation/calibration against data

➢ Open source datasets for 
integrated modelling validation 

○ Engagement with wider 
community

➢ sim2real gap closure through 
hybrid model + data-driven 
surrogates

https://arxiv.org/abs/2406.06718
https://github.com/google-deepmind/torax
https://torax.readthedocs.io
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Confidential - Google DeepMind

Thank you. Sebastian Bodenstein

Jonathan Citrin

Anushan Fernando

Philippe Hamel

Tamara Norman

TORAX team
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