14th ITER International School Aix-Marseille Université Aix-en-Provence, France 2025-07-02

Integrated Modeling for Heating and Current Drive

A. Fukuyama

National Institutes for Quantum Science and Technology (QST) Professor Emeritus, Kyoto University

Contents

- Role of heating and current drive
 - start-up, sustainment, probabilistic incidents, shut-down
 - control of density, temperature, current and rotation
 - plasma model: fluid, multi-fluid, kinetic
- Modeling of actuators
 - Neoclassical resistivity and bootstrap current
 - Neutral beam
 - Pellet
 - Waves
 - Frequency ranges: IC, LH, EC
 - Models: ray tracing, beam tracing, full wave, kinetic full wave
- Kinetic integrated modeling
- Summary

Components of integrated tokamak modeling

Role of heating, current drive and fueling

- Start-up of fusion reaction
 - Initial heating for high temperature
 - Initial fueling for high density
- Sustainment of fusion reaction
 - Continuous fueling to sustain fuel density
 - Pressure profile control to optimize fusion power output
- Sustainment of stable plasma
 - Continuous current drive to keep plasma current
 - Pressure profile control to avoid MHD instability
 - Rotation control to avoid MHD instability

Various role of actuators

Actuator	Heating	Current drive	Fueling	Others
PF coil $E_{toroidal}$	Joule heating	Inductive current drive		
NBI	NBI heating	NBI current drive	NBI fueling	NBI rotation drive*1
Wave	Wave heating	Wave current drive		
Pellet injection			Fueling	Cooling*1
Gas injection			Fueling*2	Cooling*1

*1Control of MHD stability, *2SOL physics

- Heat and momentum sources:
 - Toroidal electric field and density gradient
 - Neoclassical resistivity, bootstrap current
 - Alpha particle heating:
 - sensitive to fuel density and momentum distribution
 - Neutral beam injection:
 - birth profile, finite size orbit, deposition to bulk plasma
 - Waves:
 - \circ IC (~ 50 MHz): fuel ion heating, current drive, rotation drive(?)
 - $\circ~$ LH (~ $10\,GHz)$: current drive
 - $\circ~\text{EC}~(\sim 170\,\text{GHz})\text{:}$ current drive, pre-ionization
- Particle source
 - Neutral beam injection:
 - Pellet injection: penetration, evaporation, ionization, drift motion
 - Gas injection: massive gas injection, wall recycling

Description of heating and current drive

NBI

- 1. Beam injection
- 2. Beam penetration
- 3. Beam deposition sensitive to $f_{\rm S}(\boldsymbol{v})$
- 4. Generation of energetic ions
- 5. Slowing down of energetic ions
- 6. Deviation of $f_{\rm S}(v)$ from Maxwellian
- 7. Modification of **Beam deposition** \Rightarrow 3

Wave

- 1. Wave excitation
- 2. Wave propagation
- 3. Wave absorption: sensitive to $f_{\rm S}(\boldsymbol{v})$
- 4. Velocity diffusion of resonant particles
- 5. Collisional relaxation
- 6. Deviation of $f_{\rm S}(\boldsymbol{v})$ from Maxwellian
- 7. Modification of **Wave absorption** \Rightarrow 3
- How to include deviation of $f_{\rm S}(v)$ from Maxwellian

Various model of plasma

• Fluid model

1D Diffusive transport equation: $n, u_{\phi}, T(\rho, t)$ diffusive transport

2D Diffusive transport equation: $n, u_{\parallel}, T(\rho, \chi, t)$ SOL transport

1D Fluid-type transport equation: $n, u, T(\rho, t)$ multi-fluid model

2D Fluid-type transport equation: $n, u, T(\rho, \chi, t)$ **2D multi-fluid**

3D Gyro fluid equation: $n, u, T(\rho, \chi, \zeta, t)$ Gyro fluid model

• Kinetic model

Bounce-averaged drift-kinetic equation: $f(p, \theta_p, \rho, t)$ **BAFP**

Axisymmetric gyrokinetic equation: $f(p, \theta_p, \rho, \chi, t)$ AGK model

Gyrokinetic equation: $f(p, \theta_p, \rho, \chi, \zeta, t)$ Gyro kinetic model

Full kinetic equation: $f(p, \theta_p, \phi_g, \rho, \chi, \zeta, t)$ Full kinetic model

Bounce-averaged Fokker-Planck equation

• Multi-species momentum distribution functions:

 $f_s(p_{\parallel}, p_{\perp}, \rho, t)$

- 3 phase space variables:
 - parallel and perpendicular momentum, minor radius
 - toroidal symmetry, gyro-motion average, bounce-motion average
- Fokker-Planck equation

$$\frac{\partial f_s}{\partial t} = E(f_s) + C(f_s) + Q(f_s) + D(f_s) + S_s$$

- E(f): Acceleration due to DC electric field
- C(f): Nonlinear Coulomb collision
- Q(f): Quasi-linear diffusion due to wave-particle resonance
- D(f): Spatial diffusion (model, collisional, QL)
- S: Particle source and sink (NBI, Fusion reaction, Pellet)

Examples of velocity distribution functions

• 3D multi-species Fokker-Planck analysis of $f_s(p_{\parallel}, p_{\perp}, \rho, t)$

Electron : EC+LH

D:NBI

Joule heating

• Heating by plasma current

– Heating power density: $P_{\Omega} = \eta j^2$ (η : resistivity, *j*: current density)

• Upper limit on plasma current: MHD stability requires

$$q_a = \frac{aB_\phi}{RB_{\theta a}} = \frac{2\pi a^2 B_\phi}{R\mu_0 I_{\rm p}} \ge 2$$

- Upper limit of current density: $\langle j \rangle = \frac{I_p}{\pi a^2} \le \frac{1}{\mu_0} \frac{B_\phi}{R}$

$$\eta \langle j^2 \rangle = \frac{3nT}{\tau_{\rm E}}$$
- Resistivity: $(T_{\rm e}: \text{keV}): \quad \eta \sim 8 \times 10^{-8} Z_{\rm eff} T_{\rm e}^{-3/2} \,\Omega \text{m}$
- Energy confinement time: $\tau_{\rm E} = 0.5(n/10^{20})a^2$
Upper limit of temperature: $T_{\rm max} = 1.8 \,Z_{\rm eff}^{2/5} \left(\frac{a}{R}B_{\phi}\right)^{4/5} \sim 0.87 \,B_{\phi}^{4/5}$

Joule heating: neoclassical resistivity

- Resistivity in tokamak plasma
 - **Trapped particles** do not contribute to parallel current.
 - Collisional transition between trapped and untrapped
 - Steady-state solution of bounce-averaged Fokker-Planck equation
- Approximate formula:

[Wesson, Tokamaks 3rd]

$$\eta = \eta_s \frac{Z_{\text{eff}}}{(1-\phi)(1-C\phi)} \frac{1+0.27(Z_{\text{eff}}-1)}{1+0.47(Z_{\text{eff}}-1)}$$

where

$$\eta_{s} = 0.51 \frac{m_{e}}{n_{e}e^{2}\tau_{e}}, \quad C = \frac{0.56}{Z_{eff}} \left(\frac{3.0 - Z_{eff}}{3.0 + Z_{eff}}\right)$$

$$\phi = \frac{f_{T}}{1 + (0.8 + 0.20Z_{eff})v_{*e}}, \quad f_{T} = 1 - \frac{(1 - \epsilon)^{2}}{(1 - \epsilon^{2})^{1/2}(1 + 1.46\epsilon^{1/2})}$$

$$\epsilon = \frac{r}{R}, \quad v_{*e} = \frac{Rq}{v_{Te}\tau_{e}}, \quad \tau_{e} = 3(2\pi)^{3/2} \frac{\epsilon_{0}^{2}m_{e}^{1/2}T_{e}^{3/2}}{n_{e}e^{4}\ln\Lambda}$$

Bootstrap current (1)

- Current driven by density gradient in tokamak plasma
 - trapped particle current

$$j_{\text{trapped}} \sim -e \,\epsilon^{1/2} (\epsilon^{1/2} v_{\text{T}}) \,\frac{\mathrm{d}n_{\text{e}}}{\mathrm{d}r} w_{\text{b}} \sim -q \frac{\epsilon^{1/2}}{B} T \frac{\mathrm{d}n_{\text{e}}}{\mathrm{d}r}$$

• $\epsilon^{1/2}$: fraction of trapped particles • $\epsilon^{1/2}v_{\text{Te}}$: magnitude of parallel velocity of trapped particles • $w_{\text{b}} = \epsilon^{-1/2}q\rho$: radial width of trapped particle orbit • $\frac{\mathrm{d}n_{\mathrm{e}}}{\mathrm{d}r}w_{\mathrm{b}}$: density difference of upward and downward electrons

Bootstrap current (2)

- Collisional momentum transfer
 - from trapped electrons to untrapped electrons, and balance with ions

$$v_{\text{effective }} j_{\text{trapped}} = \frac{v_{\text{ee}}}{\epsilon} j_{\text{trapped}} \sim v_{\text{ei}} j_{\text{BS}}$$

Bootstrap current density

$$j_{BS} \sim \frac{v_{ee}}{\epsilon v_{ei}} j_{trapped} \sim -\frac{v_{ee}}{v_{ei}} \frac{q}{\epsilon^{1/2}} \frac{T}{B} \frac{dn}{dr} \sim -\frac{q}{\epsilon^{1/2}} \frac{T}{B} \frac{dn}{dr}$$

• Slightly more accurate form: $q = \epsilon B/B_{\theta}$ [Wesson, Tokamaks 3rd]

$$j_{\rm BS} = -\frac{\epsilon^{1/2} n_{\rm e} T_{\rm e}}{B_{\theta}} \left[2.44 \left(1 + \frac{T_{\rm i}}{T_{\rm e}} \right) \frac{\partial \ln n_{\rm e}}{\partial r} + 0.69 \frac{\partial \ln T_{\rm e}}{\partial r} - 0.42 \frac{T_{\rm i}}{T_{\rm e}} \frac{\partial \ln T_{\rm i}}{\partial r} \right]$$

Finite orbit-width Fokker-Planck analysis for higher accuracy

NBI heating (1)

• Neutral beam injection

Ion generation (DC discharge, RF discharge)

- \implies Acceleration by electric field (10 keV ~ 1 MeV)
- \implies Neutralization (remove ions)
- \implies Injection into plasma
- \implies Collide with ions and electrons to heat them

[Wesson, Tokamaks 3rd]

• Features

- Physical mechanism is simple
- High power heating achieved
- High current drive efficiency
- Rotation drive is possible

- High injection energy for large machine
- Large aperture area required

NBI heating (2)

• Neutralization efficiency:

- Charge exchange for less than 80 keV
- Ionization reduces neutralization for higher than 80 keV.
- Negative ion is required for high energy

Plasma heating

- Collisional crosssection $\propto u_{\text{relative}}^{-4}$
- Collision with ions decreases,
 Collision with electrons increases,
 for high beam energy

Modeling of NB heating and current drive (1)

- Fast neutral to fast ion
 - Charge exchange: $A_{fast} + A^+ \longrightarrow A + A_{fast}^+$
 - Collisional ionization (single step model)

$$A_{\text{fast}} + (e \text{ or } B^+) \longrightarrow A^+_{\text{fast}} + (e \text{ or } B^+) + e$$

- Collisional ionization (multi step model) [Janev et al. NF 1989]

$$A_{\text{fast}} + (e \text{ or } B^+) \longrightarrow A^*_{\text{fast}} + (e \text{ or } B^+) \longrightarrow A^+_{\text{fast}} + (e \text{ or } B^+) + e$$

- Collisional ionization exceeds charge exchange for Eng $\gtrsim 50\,keV$
- Multi-step ionization exceeds single-step for $Eng \gtrsim 50 \, \text{keV}$
- Rate equation of beam atoms
 - $I_n(x)$: Beam intensity of excitation level *n* and distance *x*

$$\psi_0 \frac{\mathrm{d}I_n}{\mathrm{d}x} = \sum_{n'=1}^N Q_{nn'} I_{n'}$$

Modeling of NB heating and current drive (2)

- Current drive efficiency
 - Simple estimates

 $j_{\text{NB}} = S_{\text{fastion}} \tau_{\text{slowingdown}} Z_{\text{fastion}} e v_{||\text{beam}}$

- Collision with electron is dominant for high energy beam
- Slowing-down distribution should be taken into account
- Trapped particle effect should be taken account
- 2D Fokker-Planck or Monte Carlo analysis is required

N-NB driven current in JT-60U N-NB CD efficiency in JT-60U

[ITER PB, NF (2007)]

[ITER PB, NF (2007)]

Modeling of pellet injection

- Physics of ablation and deposition
 - Neutral gas shielding: neutral gas shields pellet
 - Drift effects:

 $\nabla B \operatorname{drift} \Rightarrow \operatorname{Charge separation} \Rightarrow \operatorname{Vertical} E \operatorname{field} \Rightarrow E \times B \operatorname{drift}$

Deposition

Wave heating (I)

- Interaction between electromagnetic wave and charged particles
- Collisional damping
 - Accelerated by wave electric field collides with other particles
 - Dominant in low-temperature plasma
 - Very low in high-temperature plasma ($\nu \ll \omega$)
- Landau damping
 - Charge particles are accelerated and decelerated by wave field
 - For most particles, time average of acceleration is zero
 - Resonant particles $v = \frac{\omega}{k}$
 - The particle feels electric field with the same phase
 - Some particles are continuously accelerated
 - If the gradient of velocity distribution function at the wave phase velocity, particles are accelerated in average.

• Cyclotron damping

- When wave frequency is close to the cyclotron frequency
- Condition of cyclotron resonance: $v_{\parallel} = \frac{\omega \omega_{\rm c}}{k_{\parallel}}$
- Wave phase synchronizes with the cyclotron motion of particles

$$\exp(i\phi) = \exp[i\phi_0 + i(k_{\perp}x + k_{\parallel}z - \omega t)]$$

$$= \exp[i\phi_0 + ik_{\perp}\rho\sin\omega_c t + ik_{\parallel}v_{\parallel}t - i\omega t]$$

$$= \sum_{n=-\infty}^{\infty} J_n(k_{\perp}\rho) \exp[i\phi_0 + i(n\omega_c + k_{\parallel}v_{\parallel} - \omega)t]$$

- Particle feels constant wave phase: \implies resonance condition
- Particles are accelerated perpendicularly to the magnetic field
- In general, cyclotron harmonic resonance (n: integer)

$$v_{||} = \frac{\omega - n\omega_{\rm c}}{k_{||}}$$

Various Electromagnetic Modes in Tokamak Plasmas

- Externally-excited modes: heating and current drive
 - Ion cyclotron range: $10 \text{ MHz} \sim 300 \text{ MHz}$
 - Lower hybrid range: $300\,MHz \sim 10\,GHz$
 - Electron cyclotron range: $10 \text{ GHz} \sim 300 \text{ GHz}$
- Internally-excited long-wavelength modes: global instability
 - MHD modes: sawtooth, fishbone, RWM, NTM, ELM
 - Alfvén eigenmodes: TAE, RSAE, HAE, BAE, ···
- Internally-excited short-wavelength modes: turbulent transport
 - Drift waves: trapped electron mode, temperature gradient modes
 - Ballooning modes: resistive BM, kinetic BM, current-diffusive BM
 - Ion/Electron cyclotron emission: Induced by energetic particles

Waves Used for Heating and Current Drive

- Waves with various frequency ranges
 - EC (electron cyclotron): O-mode, X-mode, electron Bernstein wave
 - LH (lower hybrid): fast wave (helicon), slow wave (TG and LH)
 - IC (ion cyclotron): magnetosonic wave, ion cyclotron wave
 - AW (Alfvén waves): compressional Alfvén wave, shear Alfvén wave

Ion cyclotron wave (I)

• Fast wave heating

Ion cyclotron resonance

- Fundamental cyclotron heating is weak for one-species of ions
- $_{\circ}~$ Perpendicular acceleration is reduced to zero when $\omega\sim\omega_{c}$

- Two-ion hybrid resonance

- Cyclotron resonance of minority ions
- Electron Landau damping in hot plasmas
- Second harmonic heating: efficient heating even if one ion species
- Fast wave current drive: electrons accelerated with $\omega < \omega_{ci}$

• Features

- Actual achievements of high power heating (30 MW)
- Heating near center is easy

- Large antenna is required
- Current drive efficiency is slightly lower

Ion cyclotron wave (II)

- Two-ion hybrid resonance heating
 - 10% of hydrogen into deuteron plasmas
 - Heating near the cyclotron resonance of hydrogen

Wave E field Minority ion heating

Ion cyclotron wave (III)

- Fast wave current drive
 - Excite wave which is not absorbed by ions
 - Wave absorbed by electrons accelerates in one direction
 - Equilibrium balanced by collision with ions
 - Asymmetry of electron distribution function drives current

Lower hybrid wave (I)

• Frequency range connecting to lower hybrid resonance $\omega = \omega_{LH}$

$$\omega_{\rm LH} = \frac{\omega_{\rm pi}}{\sqrt{1 + \omega_{\rm pe}^2 / \omega_{\rm ce}^2}}$$

- Features
 - Electron heating
 - High current drive efficiency
 - Central deposition is difficult in high- T_e and high- n_e plasma
 - Delicate waveguide array antenna is required
 - Long distance between plasma and antenna is difficult
 - Antenna structure with high power injection is complicated

Lower hybrid wave (II)

- Fast wave and slow wave (Two branches with different phase vel.)
 - Refractive index along the magnetic field line $n_{||} = k_{||}c/\omega$
 - When $n_{||}$ is small, slow wave is converted to fast wave near
 - When n_{\parallel} is large, slow wave can penetrate into high density region.

• **Propagation in poloidal plane**: geometrical optics approximation

- Modification of electron velocity distribution function accompanied with wave-particle resonant interaction
 - Landau damping: linear theory, modification of $f_{\rm e}(v_{\parallel},v_{\perp})$ is infinitesimal small
 - Quasi-linear theory: modification of $f_e(v_{\parallel}, v_{\perp})$ is finite
 - Flattening of $f_e(v_{\parallel}, v_{\perp})$ near the wave phase velocity
 - Isotropic modification due to Coulomb collision
 - \circ Asymmetry of velocity distribution function \implies current drive

- **Propagation on poloidal plane**: Geometrical optics
 - Wave excited by antenna propagates without divergence
 - Absorbed near the cyclotron resonance

• Features

- Plasma control by spatially localized heating and current drive
- Heating and current drive in central region
- Small antenna distant from plasma is possible
- Slightly lower current drive efficiency
- Steady-state operation of high-power oscillator, gyrotron.

How to describe waves in plasmas (1)

		SPACE		
		Space domain	Wave number domain	
TIME	Time domain	Time-dependent simulation	Geometrical optics	
	Frequency domain	Full wave analysis	Dispersion relation	

detailedTime-dependent simulationFull wave analysisGeometrical opticssimpleDispersion relation

 \leftarrow Full wave analysis Geometrical optics \Rightarrow

How to describe waves in plasmas (2)

- Time dependent simulation: E(r, t)
 - Maxwell's equation

$$\frac{\partial \boldsymbol{B}}{\partial t} = -\boldsymbol{\nabla} \times \boldsymbol{E}, \qquad \frac{1}{c^2} \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{\nabla} \times \boldsymbol{B} - \mu_0 \boldsymbol{J}$$

- Fluid simulation: $J = \sum_{s} e_{s} n_{s} u_{s}$ (fluid velocity)
- Kinetic simulation: $J = \sum_{s} \int e_{s} v f_{s}(r, v, t) dv$ (distribution function)
- **Particle simulation**: $J = \sum_{s} \sum_{p} e_{s} v_{sp}$ (particle velocity)
 - most general
 - describe nonlinear phenomena
 - requires large computational resources
 - not appropriate for parameter survey or optimization

How to describe waves in plasmas (3)

• Full wave analysis or stationary wave optics: $E(r) \exp(-i \omega t)$

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \,\omega \mu_0 J_{\text{ext}}$$

· wave tunneling, standing wave, coupling to antenna

- requires less computational resources
- Geometrical optics: $E \exp \left[i\varphi(\mathbf{r},t)\right], \ \mathbf{k} = -i \nabla \varphi, \ \omega = i \partial \varphi / \partial t$
 - ray tracing method

$$\frac{\mathrm{d}\boldsymbol{k}}{\mathrm{d}t} = -\frac{\partial K}{\partial \boldsymbol{r}} \Big/ \frac{\partial K}{\partial \omega}, \qquad \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = \boldsymbol{v}_{\mathrm{g}} = \frac{\partial K}{\partial \boldsymbol{k}} \Big/ \frac{\partial K}{\partial \omega}$$

no tunneling, no interference, no refraction, point source

• **Dispersion relation**: $E \exp(i \mathbf{k} \cdot \mathbf{r} - i \omega t)$

$$K(\boldsymbol{k},\omega;\boldsymbol{r},t) = \det\left[\frac{c^2}{\omega^2}\boldsymbol{k}\times\boldsymbol{k}\times+\overleftarrow{\boldsymbol{\epsilon}}(\boldsymbol{k},\omega)\right] = 0$$

Dielectric tensor in cold plasmas

- Linearized equation of fluid motion: $du_s/dt = (e_s/m_s)(E + u \times B_0)$
- Cold plasma approximation: $J_s = n_s e_s u_s = \overleftrightarrow_s E$

$$\overleftrightarrow{\epsilon} = \overleftrightarrow{I} + \sum_{s} \frac{i}{\omega \epsilon_{0}} \overleftrightarrow{\sigma}_{s} = \begin{pmatrix} S & -iD & 0\\ iD & S & 0\\ 0 & 0 & P \end{pmatrix}$$

where

$$S = 1 - \sum_{s} \frac{\omega_{ps}^{2}}{\omega^{2} - \omega_{cs}^{2}}, \quad D = \sum_{s} \frac{\omega_{ps}^{2} \omega_{cs}}{\omega(\omega^{2} - \omega_{cs}^{2})}, \quad P = 1 - \sum_{s} \frac{\omega_{ps}^{2}}{\omega^{2}}$$
$$\omega_{ps} = \sqrt{n_{s} e_{s}^{2} / m_{s} \epsilon_{0}} \quad \text{and} \quad \omega_{cs} = e_{s} B_{0} / m_{s}$$

• Dispersion relation in magnetized cold plasma: $N_{x,y,z} = k_{x,y,z}c/\omega$

$$K = \begin{vmatrix} S - N_z^2 & -iD & N_x N_z \\ iD & S - N_x^2 - N_z^2 & 0 \\ N_x N_z & 0 & P - N_x^2 \end{vmatrix} = 0$$

Dielectric tensor in hot uniform plasmas (1)

• Vlasov equation for velocity distribution function $f(\mathbf{r}, \mathbf{v}, t)$

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{q}{m} \left[\boldsymbol{E}(\boldsymbol{r}, t) + \boldsymbol{v} \times \boldsymbol{B}(\boldsymbol{r}, t) \right] \cdot \frac{\partial f}{\partial \boldsymbol{v}} = 0$$

- Linearize,
- Use plane wave $e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$,
- Follow particle orbit,
- Expand over cyclotron harmonics using Bessel functions,
- Integrate over *t*,
- we obtain **dielectric tensor in hot plasmas**

Dielectric tensor in hot uniform plasmas (2)

• Dielectric tensor

$$\epsilon_{ij} = \delta_{ij} + \sum_{s} \frac{\omega_{ps}^2}{\omega^2} 2\pi \int_0^\infty v_\perp dv_\perp \int_{-\infty}^\infty dv_\parallel$$
$$\times \left[v_\perp \sum_{n} \Pi_{in}^* \Pi_{jn} L_s^{(n)} + \delta_{zi} \delta_{zj} v_\parallel \left(\frac{\partial f_{s0}}{\partial v_\parallel} - \frac{v_\parallel}{v_\perp} \frac{\partial f_{s0}}{\partial v_\perp} \right) \right]$$

where

$$L_{s}^{(n)} \equiv \frac{\omega}{\omega - n\omega_{cs} - k_{\parallel}v_{\parallel}} \left[\left(1 - \frac{k_{\parallel}v_{\parallel}}{\omega} \right) \frac{\partial f_{s0}}{\partial v_{\perp}} + \frac{k_{\parallel}v_{\perp}}{\omega} \frac{\partial f_{s0}}{\partial v_{\parallel}} \right]$$
$$\Pi_{xn} \equiv \frac{n}{\zeta} J_{n}(\zeta), \qquad \Pi_{yn} \equiv i \frac{dJ_{n}(\zeta)}{d\zeta}, \qquad \Pi_{zn} \equiv \frac{v_{\parallel}}{v_{\perp}} J_{n}(\zeta)$$

* implies complex conjugate, δ_{ij} Kronecker delta, *s* particle species, *n* cyclotron harmonic number and $\zeta = k_{\perp}v_{\perp}/\omega_{cs}$

Dielectric tensor in thermal equilibrium

Maxwellian velocity distribution function in thermal equilibrium

$$f_{s0}(\boldsymbol{v}) = n_{s0} \left(\frac{m_s}{2\pi k_{\rm B}}\right)^{3/2} \exp\left[-\frac{1}{k_{\rm B}T_{\rm s}} \left(\frac{1}{2}m_s v^2\right)\right]$$

Dielectric tensor for Maxwellian velocity distribution function

where P_n , Q_n and R_n are related to the parallel motion, and Λ_n the perpendicular motion.

Plasma-wave interaction for Maxwellian plasma

• **Parallel**: Plasma dispersion function: $Z(\xi)$

$$Z(\xi) = \frac{1}{\sqrt{\pi}} \int_C \frac{\mathrm{e}^{-u^2}}{u - \xi} \,\mathrm{d}u$$

$$P_n = \frac{\omega}{\omega - n\omega_c} \xi_n Z(\xi_n), \quad Q_n = \frac{\omega}{\omega_c} \left[1 + \xi_n Z(\xi_n) \right], \quad R_n = 2 \xi_0 \xi_n \left[1 + \xi_n Z(\xi_n) \right]$$

where

$$\xi_n = \frac{\omega - n\omega_{\rm c}}{\sqrt{2}|k_{||}|v_{\rm Ts}}$$

• **Perpendicular**: Finite Larmor Radius effects: $\Lambda_n(\lambda)$

$$\Lambda_n(\lambda) = I_n(\lambda) e^{-\lambda}$$

where

 $I_n(\lambda)$: the *n*-th order modified Bessel function of the first kind

$$\lambda = k_\perp^2 \rho^2 = k_\perp^2 \frac{v_{\rm Ts}^2}{\omega_{\rm cs}^2} = k_\perp^2 \frac{k_{\rm B} T_{\rm s}}{m_s \omega_{\rm cs}^2}$$

Full wave analysis in inhomogensous hot plasma

- Cold wave number approach: no kinetic modes
 - Use k_{cold} from the dispersion relation in a cold uniform plasma

$$\nabla \times \nabla \times E(\mathbf{r}) - \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon}(\mathbf{r}; \mathbf{k}_{cold}) \cdot E(\mathbf{r}) = i \,\omega \mu_0 \mathbf{J}_{ext}(\mathbf{r})$$

- Differential operator approach [1]: difficult for higher order
 - Expand $\overleftarrow{\epsilon}(\mathbf{r}, \mathbf{k})$ with respect to \mathbf{k} and replace \mathbf{k} by $-i \nabla$

$$\nabla \times \nabla \times E(\mathbf{r}) - \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon}(\mathbf{r}; -\mathbf{i} \nabla) \cdot E(\mathbf{r}) = \mathbf{i} \,\omega \mu_0 \mathbf{J}_{\text{ext}}(\mathbf{r})$$

- Spectral approach [2]: large dense matrix has to be solved
 - Fourier transform in the direction of inhomogeneity *r*

$$-\mathbf{k} \times \mathbf{k} \times \mathbf{E}(\mathbf{k}) - \frac{\omega^2}{c^2} \sum_{\mathbf{k}'} \overleftarrow{\epsilon}(\mathbf{k}, \mathbf{k}') \cdot \mathbf{E}(\mathbf{k}') = \mathrm{i} \,\omega \mu_0 \mathbf{J}_{\mathrm{ext}}(\mathbf{k})$$

• Inverse Fourier transform of $\overleftarrow{\epsilon}(r, k)$ [3]: based on uniform $\overleftarrow{\epsilon}$

[1] Fukuyama et al., CPR (1986), [2] Jaeger et al. PoP (2000), [3] Sauter et al., NF (1992)

Integral form in uniform plasmas

- propagation in *z*
- **Particle orbit**: $z = z' + v_z(t t')$
- Variable transformation : $v_z = \frac{z z'}{t t'}$
- Perturbed distribution function for Maxwellian: $\tau = t t'$

$$f(z, \mathbf{v}) = \frac{n}{(2\pi T/m)^{3/2}} \frac{q}{T} \int_0^\infty d\tau \, \mathbf{v} \cdot \mathbf{E}(z') \, \mathrm{e}^{\mathrm{i}\,\omega\tau} \, \exp\left[-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2T}\right]$$

• **Current density**: variable transformation: $v_z \Rightarrow z'$

$$\boldsymbol{J}(z) = q \int \mathrm{d}\boldsymbol{v} \, \boldsymbol{v} f(z, \boldsymbol{v}) = \int \mathrm{d}z' \, \overleftrightarrow{\sigma}(z, z') \cdot \boldsymbol{E}(z')$$

• Electric conductivity tensor: e.g. *zz* component: $\tau = t - t'$

$$\sigma_{zz}(z,z') = \frac{nq^2}{\sqrt{2\pi} m v_{\rm T}^3} \int_0^\infty \mathrm{d}\tau \, \frac{(z-z')^2}{\tau^3} \, \exp\left[-\frac{1}{2} \frac{(z-z')^2}{v_{\rm T}^2 \tau^2} + \mathrm{i}\,\omega\tau\right]$$

Ray Tracing

Geometrical Optics

- Wave length $\lambda \ll$ Characteristic scale length L of the medium
- Plane wave: Beam size *d* is sufficiently large
 - Fresnel condition is well satisfied: $L \ll d^2/\lambda$
- Evolution along the ray trajectory τ
 - Wave packet position r, wave number k, dielectric tensor D
 - Ray tracing equation:

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = \frac{\partial D}{\partial \boldsymbol{k}} / \frac{\partial D}{\partial \omega} = \boldsymbol{v}_{\mathrm{g}}$$
$$\frac{\mathrm{d}\boldsymbol{k}}{\mathrm{d}\tau} = -\frac{\partial D}{\partial \boldsymbol{r}} / \frac{\partial D}{\partial \omega}$$

- Equation for wave energy W, group velocity v_g , damping rate γ

$$\boldsymbol{\nabla}\cdot\left(\boldsymbol{v}_{\mathrm{g}}W\right)=-2\gamma W$$

Analysis of EC wave propagation in ITER

Beam Tracing: TASK/WR

- Beam size perpendicular to the beam direction: first order in ϵ
- **Beam shape** : Hermite polynomial: H_n)

$$\boldsymbol{E}(\boldsymbol{r}) = \operatorname{Re}\left[\sum_{mn} C_{mn}(\epsilon^2 \boldsymbol{r})\boldsymbol{e}(\epsilon^2 \boldsymbol{r})H_m(\epsilon\xi_1)H_n(\epsilon\xi_2) \operatorname{e}^{\operatorname{i} s(\boldsymbol{r})-\phi(\boldsymbol{r})}\right]$$

- Amplitude : C_{mn} , Polarization : e, Phase : $s(r) + i \phi(r)$

$$s(\mathbf{r}) = s_0(\tau) + k_{\alpha}^0(\tau)[r^{\alpha} - r_0^{\alpha}(\tau)] + \frac{1}{2}s_{\alpha\beta}[r^{\alpha} - r_0^{\alpha}(\tau)][r^{\beta} - r_0^{\beta}(\tau)]$$

$$\phi(\tau) = \frac{1}{2}\phi_{\alpha\beta}[r^{\alpha} - r_0^{\alpha}(\tau)][r^{\beta} - r_0^{\beta}(\tau)]$$

- Position of beam axis : r_0 , Wave number on beam axis: k^0
- **Curvature radius** of equi-phase surface: $R_{\alpha} = 1/\lambda s_{\alpha\alpha}$
- Beam radius: $d_{\alpha} = \sqrt{2/\phi_{\alpha\alpha}}$
- Gaussian beam : case with m = 0, n = 0

• Solvable condition for Maxwell's equation with beam field

$$\begin{aligned} \frac{\mathrm{d}r_{0}^{\alpha}}{\mathrm{d}\tau} &= \frac{\partial K}{\partial k_{\alpha}} \\ \frac{\mathrm{d}k_{\alpha}^{0}}{\mathrm{d}\tau} &= -\frac{\partial K}{\partial r^{\alpha}} \\ \frac{\mathrm{d}s_{\alpha\beta}}{\mathrm{d}\tau} &= -\frac{\partial^{2}K}{\partial r^{\alpha}\partial r^{\beta}} - \frac{\partial^{2}K}{\partial r^{\beta}\partial k_{\gamma}}s_{\alpha\gamma} - \frac{\partial^{2}K}{\partial r^{\alpha}\partial k_{\gamma}}s_{\beta\gamma} - \frac{\partial^{2}K}{\partial k^{\gamma}\partial k^{\delta}}s_{\alpha\gamma}s_{\beta\delta} + \frac{\partial^{2}K}{\partial k^{\gamma}\partial k^{\delta}}\phi_{\alpha\gamma}\phi_{\beta\delta} \\ \frac{\mathrm{d}\phi_{\alpha\beta}}{\mathrm{d}\tau} &= -\left(\frac{\partial^{2}K}{\partial r^{\alpha}\partial k^{\gamma}} + \frac{\partial^{2}K}{\partial k^{\gamma}\partial k_{\delta}}s_{\alpha\delta}\right)\phi_{\beta\gamma} - \left(\frac{\partial^{2}K}{\partial r^{\beta}\partial k^{\gamma}} + \frac{\partial^{2}K}{\partial k^{\gamma}\partial k_{\delta}}s_{\beta\delta}\right)\phi_{\alpha\gamma} \end{aligned}$$

- By integrating this set of 18 ordinary differential equations, we obtain trace of the beam axis, wave number on the beam axis, curvature of equi-phase surface, and beam size.
- Equation for the wave amplitude C_{mn}

$$\nabla \cdot \left(\boldsymbol{v}_{\mathrm{g0}} | C_{mn} |^2 \right) = -2 \left(\gamma | C_{mn} |^2 \right)$$

Group velocity: v_{g0} , Damping rate: $\gamma \equiv (e^* \cdot \overleftarrow{\epsilon}_A \cdot e)/(\partial K/\partial \omega)$

Diffraction of wave beam in vacuum

• Beam radius as a function of path length: f = 170 GHz, $\lambda = 1.76 \text{ mm}$

Application to ITER EC beam

- $f = 170 \,\text{GHz}$, toroidal angle 20° , poloidal angle 60°
- Initial beam radius: 50 mm

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \,\omega \mu_0 j_{\text{ext}}$$

- Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$:
 - kinetic damping: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Drift-kinetic equation for energetic ions to calculate $\overleftarrow{\epsilon}$

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

- Poloidal and toroidal mode expansion:
 - Accurate estimation of k_{\parallel}

Analysis of IC propagation in ITER

• Minority heating in D phase: D + H

Radial profile Wave electric field P_{abs} by minority ion

Full wave analysis by FEM: TASK/WF

• Wave electric field with complex frequency: $\tilde{E}(r, t) = E(r) e^{-i \omega t}$

• Maxwell's equation:
$$\nabla \times \nabla \times E - \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E = i \,\omega \mu_0 j_{ext}$$

- $\overleftarrow{\epsilon}$: Dielectric tensor
 - \circ Collisional cold plasma model \implies Integral form
- Numerical method: FEM
 - 3D version
 - Tetrahedron element
 - Electric field along a edge of a tetrahedron
 - 2D version: axisymmetric cylindrical or plane
 - Triangular element
 - **EB**: Scalar (toroidal) and vector (poloidal) hybrid basis function
 - $A\phi$: Scalar basis function for vector and scalar potentials

EC waves in a spherical tokamak

- Density profile is parabolic.
- Collisional cold plasma model is used for the dielectric tensor.
 - Mode conversion of EC wave into EB wave does not occur.

Benchmark test with TASK/WM in Vacuum

 TASK/WM and WF2 have different spacial resolution, so there are some differences in their results.

2D analysis on poloidal plane (Cold plasma)

Kinetic Integrated Modeling

Better understanding of burning plasmas

• Behavior of energetic particles: production, transport, excitation

Analysis of momentum distribution functions

- Self-consistent description of energetic particles
 - No separate description of bulk and energetic components
 - Interaction with electromagnetic field
- Influence of energetic particles on heating processes
 - Propagation and absorption of waves
 - Fusion reaction rate
- Modification of $f(\mathbf{v}, \rho, t)$ due to radial transport
 - Broadening of deposition profile

Modeling based on momentum distribution function is required.

Kinetic Description of Transport

3D Fokker-Planck analysis: TASK/FP

• Bounce-averaged:

Trapped particle effect, zero banana width

• Relativistic:

momentum p, relativistic collision operator

• Non-Maxwellian collision operator:

momentum and energy conserved (2nd order Legendre exp.)

• Multi-species:

conservation between species

• Radial diffusion:

Anomalous radial diffusion with momentum dependence

• Fusion reaction:

Contribution of energetic ions (integration in momentum space)

Ref. H.Nuga and A.Fukuyama: Prog. Nuc. Sci. Tech. 2 76 (2011)

A. Fukuyama et al.: IAEA FEC2012 TH/P6-13

Analysis of Multi-Species Heating in ITER Plasma

• 2D MHD equilibrium

 $-R = 6.2 \text{ m}, a = 2.0 \text{ m}, \kappa = 1.7, \delta = 0.33, B_0 = 5.3 \text{ T}, I_p = 3 \text{ MA}$

• Multi species:

- Electron, D, T, He
- Multi scheme heating:
 - ICH, NBI, NF (DT, DD, TT)
- Initial density:

 $- n_{\rm e}(0) = 10^{20} \,{\rm m}^{-3}, n_{\rm D}(0) = 5 \times 10^{19} \,{\rm m}^{-3}, n_{\rm T}(0) = 5 \times 10^{19} \,{\rm m}^{-3}$

• Initial temperature:

 $- T_{\rm e}(0) = T_{\rm D}(0) = T_{\rm T}(0) = 20 \,\rm keV$

• Radial diffusion coefficient: simplest model

$$- D_{rr} = 0.1(1 + 9\rho^2) \,\mathrm{m/s}$$

Momentum Distribution Functions (t = 1 s)

Collisional power transfer

- Requires more momentum meshes for better accuracy
 - At present, typically $100 \times 100 \times 50$

Simulation with Radial Transport

Kinetic energy density vs ρ

Collisional power transfer vs t Collisional power transfer vs ρ

Dependence on Radial Diffusion Model

Dependence on Radial Diffusion Model

		$D_{rr} \propto p'^0$	$D_{rr} \propto p'^{-1/2}$	$D_{rr} \propto p'^{-1}$	$D_{rr}=0$
$E_{\rm K}$ [keV]	е	7.13	7.63	7.74	8.18
	D	9.57	10.61	10.82	11.72
	Т	7.18	8.00	8.15	9.44
	He	471.70	527.12	558.28	622.75
$T_{\text{bulk,ave}}$ [keV]	е	7.16	7.64	7.80	8.18
	D	7.18	8.03	8.06	8.95
	Т	7.13	7.98	7.98	8.87
	He	9.88	12.48	12.96	17.88
$n_{\rm ave} [10^{16} {\rm m}^{-3}]$	He	6.45	8.36	8.64	9.65
$P_{\rm abs}[{ m MW}]$	IC (e)	7.94	9.24	9.68	10.79
	IC (T)	8.95	10.34	10.87	15.28
	NB (D)	31.68	31.69	31.68	31.69
	NF_{DT}	23.36	30.77	32.70	36.88
I _{CD} [MA]	l (e)	-1.13	-1.36	-1.44	-1.62
	I (D)	2.74	3.01	3.11	3.24
	T (tot)	1.61	1.65	1.67	1.62

Validation with experimental observation is necessary.

Summary

- Various actuators are used for heating, current drive, and fueling in fusion plasmas.
- Modeling of **Joule heating**, **NB injection** and **pellet injection** are relatively well established.
- Modeling of **wave heating** has various levels of analyses with different accuracy. Appropriate model should be used for its purpose.
- Self consistent analyses of wave propagation and absorption and modification of velocity distribution functions will be important in burning plasmas.