Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cold boxes reach home

    Three cryogenic plant cold boxeswere moved last week from temporary storage to their final destination on the ITER site. It was the occasion to remember a piece [...]

    Read more

  • Kazakh Tokamak celebrates first plasma

    The fusion world directed its applause to the east earlier this month as the Kazakh tokamak KTM started operations with a first plasma discharge. 'We are happ [...]

    Read more

  • Small delivery for a very massive tool

    At ITER, two massive sector sub-assembly toolswill suspend and equip the vacuum vessel sectors in the Assembly Hall before they are transported by overhead cran [...]

    Read more

  • Without minimizing challenges, Council reaffirms commitment

    On 24 October 2007, the ITER Organization was officially established following the ratification by the seven ITER Members of the project's constitutive document [...]

    Read more

  • Heat waves

    Plasma is like a tenuous mist of particles—light atoms that have been dissociated into ions (the atom nucleus) and free-roaming electrons. In order to study pla [...]

    Read more

Of Interest

See archived articles

Winding completed on first central solenoid module

-US ITER

The final turns of the first central solenoid module on the winding table at General Atomics. Photo: GA (Click to view larger version...)
The final turns of the first central solenoid module on the winding table at General Atomics. Photo: GA
The US Domestic Agency and vendor General Atomics completed a major milestone on 6 April by winding the first module for the ITER central solenoid. The feat was accomplished at the General Atomics Magnet Development Facility in Poway, California.

Each central solenoid module is fabricated from approximately 6,000 metres of niobium-tin (Nb3Sn) conductor, supplied by Japan in seven spools. The central solenoid, a giant electromagnet considered the "heartbeat of ITER," will consist of six stacked modules surrounded by a support structure.  When assembled, the entire 13 Tesla central solenoid and associated structures will be 13 metres tall and weigh 1,000 metric tons.

Conductor from six spools is wound to form six separate hexapancakes (6 layers) containing 14 turns. The seventh spool is wound to form a quadpancake (4 layers) containing 14 turns.

After winding, the completed hexapancakes and quadpancake will be stacked and joined prior to heat treatment, insulation, vacuum pressure impregnation, and final testing.


return to the latest published articles