Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak Complex | Interior design

    Fresh from the offices of the Design& Construction Integration Division, this cutaway drawing peels back the walls to reveal theinterior layout of the Tokam [...]

    Read more

  • Fusion world | A visit to Kyoto's heliotron

    At the Institute of Advanced Energy, Kyoto University, researchers have been exploring the heliotron concept of magnetic fusion device for more than half a cent [...]

    Read more

  • Construction site | The lights of autumn

    Summer is over in Provence and the beautiful autumn light is back, revealing every detail of the landscape ... and of the ongoing works on the ITER construction [...]

    Read more

  • Cryostat | A true sense of size

    Just like a thermos provides the insulation to keep your coffee warm—or your water cold—the ITER cryostat raises a barrier around the superconducting magnets th [...]

    Read more

  • Image of the week | ITER at 10

    The ITER Organization was established ten years ago, on 24 October 2007. A week ahead of the official anniversary, part of the ITER staff, now numbering 800, ga [...]

    Read more

Of Interest

See archived articles

Winding completed on first central solenoid module

US ITER

The final turns of the first central solenoid module on the winding table at General Atomics. Photo: GA (Click to view larger version...)
The final turns of the first central solenoid module on the winding table at General Atomics. Photo: GA
The US Domestic Agency and vendor General Atomics completed a major milestone on 6 April by winding the first module for the ITER central solenoid. The feat was accomplished at the General Atomics Magnet Development Facility in Poway, California.

Each central solenoid module is fabricated from approximately 6,000 metres of niobium-tin (Nb3Sn) conductor, supplied by Japan in seven spools. The central solenoid, a giant electromagnet considered the "heartbeat of ITER," will consist of six stacked modules surrounded by a support structure.  When assembled, the entire 13 Tesla central solenoid and associated structures will be 13 metres tall and weigh 1,000 metric tons.

Conductor from six spools is wound to form six separate hexapancakes (6 layers) containing 14 turns. The seventh spool is wound to form a quadpancake (4 layers) containing 14 turns.

After winding, the completed hexapancakes and quadpancake will be stacked and joined prior to heat treatment, insulation, vacuum pressure impregnation, and final testing.


return to the latest published articles