Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A world in itself

    From a height of some 50 metres, you have the entire ITER worksite at your feet. The long rectangle of the Diagnostics Building stands out in the centre, with [...]

    Read more

  • Thin diagnostic coils to be fitted into giant magnets

    Last week was marked by the first delivery of diagnostic components—Continuous External Rogowski (CER) coils—from the European Domestic Agency to the ITER Organ [...]

    Read more

  • Addressing the challenge of plasma disruptions

    Plasma disruptions are fast events in tokamak plasmas that lead to the complete loss of the thermal and magnetic energy stored in the plasma. The plasma control [...]

    Read more

  • Blending (almost) seamlessly into the landscape

    Located in the foothills of the French Pre-Alps, the ITER installation blends almost seamlessly into the landscape. The architects' choice ofmirror-like steel c [...]

    Read more

  • The four-day Lego Tokamak

    For almost a week, the lobby of the ITER Headquarters building was Lego construction central, as two students from Japan's Kyoto Universityfeverishly constructe [...]

    Read more

Of Interest

See archived articles

US completes toroidal field deliveries for ITER

The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal field coil winding line at ASG in La Spezia, Italy.

A drawing of single toroidal field coil shows the scale of the ITER Tokamak. Right: The compacted cable of superconducting strand is visible around the helium cooling channel in the middle of the completed conductor. Source: US ITER (Click to view larger version...)
A drawing of single toroidal field coil shows the scale of the ITER Tokamak. Right: The compacted cable of superconducting strand is visible around the helium cooling channel in the middle of the completed conductor. Source: US ITER
All certificates of acceptance have been signed for the nine lengths of conductor, totalling over 7,000 metres. The US Domestic Agency, managed by Oak Ridge National Laboratory, has now completed its contribution of 8 percent of the toroidal field coil conductor ITER requires; the rest of the conductor has been supplied by other ITER Members.

Key industrial partners for this US procurement include: Luvata Waterbury (Connecticut) and Oxford Superconducting Technologies (New Jersey) for strand production; New England Wire Technologies (New Hampshire) for cabling; and High Performance Magnetics (Florida) and Criotec (Chivasso, Italy) for jacketing and integration. At the height of fabrication, US vendors Luvata and Oxford Superconducting Technologies were producing over five metric tons of superconducting strand per month.

The ITER facility will use approximately 80,000 km of low-temperature, helium-cooled superconducting wire to generate the immense toroidal magnetic fields needed to confine the 150-million-degree-Celsius plasma inside the ITER Tokamak. Eighteen toroidal field magnets, weighing more than 6,500 tonnes, will have a total magnetic energy of 41 gigajoules and a maximum magnetic field of 11.8 tesla.

As a partner in ITER, the US is providing hardware for multiple ITER systems. The US project will complete its next system contribution—components for the steady-state electrical network—later in 2017. Deliveries of toroidal field conductor from the US began in 2015.


return to the latest published articles