Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak Complex | Interior design

    Fresh from the offices of the Design& Construction Integration Division, this cutaway drawing peels back the walls to reveal theinterior layout of the Tokam [...]

    Read more

  • Fusion world | A visit to Kyoto's heliotron

    At the Institute of Advanced Energy, Kyoto University, researchers have been exploring the heliotron concept of magnetic fusion device for more than half a cent [...]

    Read more

  • Construction site | The lights of autumn

    Summer is over in Provence and the beautiful autumn light is back, revealing every detail of the landscape ... and of the ongoing works on the ITER construction [...]

    Read more

  • Cryostat | A true sense of size

    Just like a thermos provides the insulation to keep your coffee warm—or your water cold—the ITER cryostat raises a barrier around the superconducting magnets th [...]

    Read more

  • Image of the week | ITER at 10

    The ITER Organization was established ten years ago, on 24 October 2007. A week ahead of the official anniversary, part of the ITER staff, now numbering 800, ga [...]

    Read more

Of Interest

See archived articles

Power conversion

China delivers 4 high-tech transformers

R.A.

The four converter-transformers that passed the ITER gate at 3:00 a.m. last Wednesday are part of a set of 16 to be installed in the twin Magnet Power Converter Buildings. (Fourteen are needed for First Plasma, an extra two for subsequent operations.)

Technology for the convertor-transformers draws from four technological know-how: aluminum smelters for high DC current; motor speed drive for current inversion and High Voltage Direct Current (HVDC) power transmission lines for bypass systems. (Click to view larger version...)
Technology for the convertor-transformers draws from four technological know-how: aluminum smelters for high DC current; motor speed drive for current inversion and High Voltage Direct Current (HVDC) power transmission lines for bypass systems.
Procured by China, each of the 128-tonne converter-transformers will be paired to a rectifier and connected to the machine's ring-shaped poloidal field coils. The transformers will bring down the 66 kV AC industrial current to approximately 1 kV; the rectifiers will convert it into DC current, just like a cell phone or laptop adapter transforms the 110 or 220 volts from the wall plug into 9, 12, or 24 volts of DC current.

The difference, as in everything ITER, is in size and power. "With the exception of aluminium smelters, I can think of no industry that requires DC current higher than ITER," says Ivone Benfatto, head of the ITER Electrical Engineering Division.

However contrary to aluminium smelters, the ITER magnets need to be fed current in two directions in order to control the magnetic fields and optimize the duration of the plasmas. "In designing these very challenging components, we have also drawn from the experience in motor speed drive, like the electrical motors that power high-speed trains, whose current needs to be inverted when the train changes direction or when regenerative braking is activated."

And whereas trains can accept interruptions in current transmission, the ITER magnets can't. High voltage direct current (HVDC) power transmission lines and their bypass systems also provided a third input of industrial knowhow to the design of the ITER converter-transformers.

"Sometimes," muses Ivone, "we tend to forget that some of the components that are delivered to us are technological marvels ..."


return to the latest published articles