FAQs

Find answers to the most frequently asked questions about the ITER Project.

Select a category :

ITER is being built collaboratively by the seven ITER Members.

During the construction phase of the project, Europe has responsibility for approximately 45.5 percent of construction costs, whereas China, India, Japan, Korea, the Russian Federation and the United States will contribute approximately 9.1 percent each. The lion's share (90 percent) of contributions are delivered "in-kind." That means that in the place of cash, the Members deliver components and buildings directly to the ITER Organization.

The in-kind contributions of the ITER Members have been divided into approximately 140 Procurement Arrangements. These documents detail the technical specifications and management requirements for the procurement of plant systems, components or site construction. The value of each Procurement Arrangement is expressed in ITER Units of Account (IUAs), a currency devised to measure the value of in-kind contributions to ITER consistently over time.

Procurement allocations were assigned among the Members on the basis of valuations of components. Upon successful completion of a component, the corresponding credit value is credited to the Members' account. Contributing 9.1 percent of the project, therefore, becomes a matter of adding up the IUA value of the different contributions.

For the operation phase, the sharing of cost amongst the Members will be as follows: Europe 34 percent, Japan and the United States 13 percent, and China, India, Korea, and Russia 10 percent.

France contributes to the ITER Project as a member of the European Union. The country's commitment to ITER "at the level of EUR 1.2 billion through to 2017" was confirmed by French Minister of Research and Higher Education Geneviève Fioraso on the occasion of the ITER Headquarters inauguration (17 January 2013). Furthermore, France has contributed a number of in-kind contributions for a total of approximately EUR 260 million (ITER site preparation, the International School in Manosque and the realization of the heavy haul Itinerary). The French financial and in-kind contributions originate from the French government as well as from the local governments of the Provence-Alpes-Côte d'Azur region where ITER is located, who have pledged a total of EUR 467 million to the ITER Project over a period of 10 years.

This contribution is on par with the contracts and employment that have already been generated in the area by the ITER Project. (See section on Economic Benefits.)

For all Members, the potential benefits of participation are significant: by contributing a portion of the project's costs, Members benefit from 100 percent of the scientific results.

Based on the 2001 design, the original cost estimate of ITER was EUR 5 billion for construction costs. This estimate, based on the best available information at the time, did not include some labour costs, escalation and contingency. It also did not properly estimate the time needed for the assembly and commissioning phases of the first-of-a-kind ITER Tokamak, or include some later-term matters such as component storage.

In 2008, a detailed design review called for modifications to the ITER machine based on advancements in fusion science; these modifications, such as the addition of vertical stability and Edge Localization Mode (ELM) coils, were incorporated into the 2010 Baseline and added to overall cost. The fact that the number of ITER Members passed from four to seven also contributed to cost increases by creating a much larger number of interfaces (and hence, complexity) within the design. The third important element of the cost increase is that building construction costs have increased significantly since the 2001 estimate. Raw material costs have doubled (steel) or tripled (concrete).

In 2015, the ITER Organization conducted an in-depth review and analysis of all aspects of manufacturing and assembly of the ITER systems, structures and components. The resulting updated schedule and overall cost estimate reflect a more advanced level of design maturity and a much-improved understanding of the scope, sequencing, risks, and costs of the ITER Project. The schedule exercise identifies December 2025 as the best technically achievable date for First Plasma and 2035 as the start of Deuterium-Tritium Operation. Both dates were set contingent on resources being available.

Since that time, technical challenges have been encountered in the manufacturing of ITER's first-of-a-kind components. In many cases, those challenges have been resolved; in other cases, setbacks required repair. With the advent of the Covid-19 pandemic, it became clear that the 2016 Baseline could no longer be achieved. The ITER Organization and the Domestic Agencies have now developed an updated baseline that they proposed to the 34th and 35th Meetings of the ITER Council in 2024. The new approach to ITER operation and construction has been approved and the project is moving forward on this basis.

ITER is financed by seven Members: China, the European Union, India, Japan, Korea, Russia and the United States. In all, 35 countries are sharing the cost of the ITER Project.

Because multiple Members are collaborating to build ITER, each with responsibility for the procurement of in-kind hardware in its own territory with its own currency, a direct conversion of the value estimate for ITER construction into a single currency is not relevant.

Prior to the 2016 budget updating exercise, the European Union had estimated its global contribution to the costs of ITER construction at EUR 6.6 billion, with other Domestic Agency contributions depending on the cost of industrial fabrication in those Member states, which can be higher or lower, and their percentage contribution to the construction of ITER. Based on the European evaluation, the cost of ITER construction for the seven Members had been evaluated in the past at approximately EUR 13 billion (if all the manufacturing was done in Europe). 

At the ITER Council meeting in November 2016, the ITER Organization proposed a complete updated project schedule through First Plasma (2025*) and on to Deuterium-Tritium Operation (2035). The overall project cost in line with the revised schedule added EUR 4 billion to the original estimate, a cost that was approved by the ITER Members through their domestic budget processes. Following the challenges of the Covid pandemic, and taking into account additional technical setbacks announced in 2022, the ITER Organization partners are now re-assessing the project’s schedule (and cost). This Updated Baseline will be reviewed by the ITER Council in 2024.

For the other phases of the ITER Project the cost estimates have not changed. Operation of the ITER installation during its experimental lifetime (approximately 20 years) is estimated at 188 kIUA* per year. For the Deactivation (2037-2042) and Decommissioning phases, the costs have been established in euros at EUR 281 million and EUR 530 million respectively (EUR in 2001 values).

*The ITER Unit of Account was created as part of the ITER Agreement to equitably allocate the value of in-kind hardware procurement to each Member. In 2025, 1 IUA = EUR 2,132.05

In a global context of rising oil and gas prices, decreased accessibility to low-cost fossil fuel sources, and an estimated three-fold increase in world energy demand by the end of this century, the energy question finds itself propelled to centre stage. How will it be possible to supply this new energy without adding to greenhouse gases?

Investing in renewables such as solar, wind and geothermal is important. Just like in fusion R&D ... with significant investment comes advancements in technology, and with advancements in technology comes a decrease in price. All calculations point to an increase in the importance of renewables in the decades to come.

The ideal future energy mix would hold a mixture of generation methods instead of a large reliance on one source. Fusion offers advantages that make it worth pursuing: carbon free, abundant energy that can operate in a baseload capacity, which is not easy for generation methods based on intermittent sources, such as wind or sun.

The fusion community doesn't see itself in competition with renewable forms of energy. Rather, in a world ever more dependent on energy, it is important to follow all of the promising options for our common future.

The ITER Organization manages its cost estimate and associated risk in the same way as any large project, using state-of-the-art software and industry-standard risk analysis. There is always a risk for a construction project managed over several years that certain "external" factors (labour, building materials) or "internal" factors (the complexity of increased interfaces in the design, design changes, nuclear safety authority requirements or inspections, manufacturing delays, technical setbacks, etc.) have an impact on the budget.

To track the risk of cost increase, each activity in the ITER Organization cost estimate is assigned a level of uncertainty in accordance with a risk classification system. The values of the activities and their uncertainty classifications are then analyzed to predict confidence levels. These important tools allow management to identify and react to possible cost increases.

To compensate for the risk associated with the uncertainty in the cost estimate, the ITER Organization at all times seeks cost savings to be able to offset potential cost increases.