Ballet in the sky

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryodistribution | Blowing cold and hot

    If the cryodistribution system were a railroad, the cryogenic termination cold box would be its main switch. A massive structure packed with pipes, valves, elec [...]

    Read more

  • Pre-assembly activities | Captured from on high

    With assembly tools standing 22 metres tall, massive bridge cranes straddling the width of the building, and alien-shaped components placed at regular intervals [...]

    Read more

  • 27th ITER Council | Assembly moves ahead

    The Twenty-Seventh Meeting of the ITER Council took place by videoconference on 18 and 19 November 2020, chaired by LUO Delong from China. Representat [...]

    Read more

  • Fusion world | Translating JET into ITER

    With an inner wall made of beryllium and tungsten, the European tokamak JET is the only tokamak in the world to share the same material environment as ITER. Whe [...]

    Read more

  • Worksite | Major progress you don't see from the air

    There was a time when aerial pictures of the ITER worksite taken at six-month intervals showed spectacular change. Buildings and structures sprouted from previo [...]

    Read more

Of Interest

See archived entries

Ballet in the sky

The spectacular aerial ballet will continue in the coming weeks as 12 identical pylons are erected and assembled along the six kilometres that separate the ITER platform from the 400 kV power line. (Click to view larger version...)
The spectacular aerial ballet will continue in the coming weeks as 12 identical pylons are erected and assembled along the six kilometres that separate the ITER platform from the 400 kV power line.
For ITER, European Domestic Agency F4E or ENGAGE staff with an office facing the platform, the spectacular show continued last week as specialists from the German company GS-Energy finalized the installation of the 120-tonne pylon that will hold the power cables for ITER's four-hectare switchyard.

Over two days this week, the four pre-assembled "arms" of the pylon, of which the largest weigh 16 tonnes, were hoisted one by one to the frame and bolted by a team of eight specialists in "acrobatic works."

Assembling a pylon requires some five tons of individual bolts. Once each bolt is properly tightened, it is "clipped" by way of hammer and awl in order to prevent it from unscrewing.

The spectacular aerial ballet will continue in the coming weeks as 12 identical pylons are erected and assembled along the six kilometres that separate the ITER platform from the existing 400 kV power line.

Next week, workers will pass "pulling cables," which are much thinner and lighter than power cables, through the temporary pulleys that can be seen hanging from the pylons' arms. Once these pulling cables are in place for at least two pylons, they will be attached to the power cables. Powerful truck-mounted winches will pull the power cables into place and pulleys will then be replaced by glass insulators.

One by one, the four pre-assembled ''arms'' of the pylon were hoisted to the frame and bolted by a team of eight specialists in acrobatic works. (Click to view larger version...)
One by one, the four pre-assembled ''arms'' of the pylon were hoisted to the frame and bolted by a team of eight specialists in acrobatic works.
Each pylon will support two power cables, each consisting of three "phase cables", plus two "lightning protection" cables. All cables are four-centimetres in diameter and are made of an aluminium alloy that is lighter, and cheaper, than copper.

A true reflection of the ITER project, pylon assembly is an international operation: most of GS-Energy's acrobatic works specialists are Lithuanian and communicate with their foreman in German. When the acrobats are at the top of the tower, some 40 metres above ground, they rely on the foreman's French skills to formulate their needs to the crane operator...


return to the latest published articles