Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

  • Repairs | Setting the stage for a critical task

    Like in a game of musical chairs—albeit in slow motion and at a massive scale—components in the Assembly Hall are being transferred from one location to another [...]

    Read more

  • Image of the week | There is life on Planet ITER

    Dated April 2023, this new image of the ITER "planet" places the construction site squarely in the middle. One kilometre long, 400 metres wide, the IT [...]

    Read more

Of Interest

See archived entries

Helios supercomputer ready to bite the bytes

The CEA-F4E CSC team standing between a section of the Helios supercomputer, from left to right: Jacques David, François Robin, Jacques Noé (CEA) and Susana Clement Lorenzo (F4E). (Click to view larger version...)
The CEA-F4E CSC team standing between a section of the Helios supercomputer, from left to right: Jacques David, François Robin, Jacques Noé (CEA) and Susana Clement Lorenzo (F4E).
The Helios supercomputer is operational according to schedule at the International Fusion Energy Research Centre (IFERC) hosted by the Japanese Atomic Energy Authority (JAEA) in Rokkasho. The machine, whose mission it is to perform complex calculations for plasma physics and fusion technology, has passed its acceptance tests achieving 1,132 Petaflop LINPACK [1] performance.

The Computer Simulation Centre (CSC), where Helios operates, is an important component of Europe's contribution to the Broader Approach, an agreement signed between Europe and Japan to complement the ITER project through various R&D activities in the field of nuclear fusion. The European participation to the Broader Approach is coordinated by Fusion for Energy. The supercomputer was provided by France as a part of its voluntary contribution to the Broader Approach, through a contract between the Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) and manufacturer Bull.

The acceptance tests of the supercomputer were carried out between 13-22 December 2011 in Rokkasho, Japan. The tight construction schedule was successfully met offsetting any disruptions caused by the great East-Japan earthquake in March 2011. The installation of the equipment was completed in early December and by the end of the month a 1,132 Petaflops LINPACK performance was achieved, ranking Helios fifth in the TOP-500 November 2011 list.

The areas of technology addressed by the different proposals. (Click to view larger version...)
The areas of technology addressed by the different proposals.
The operation of the supercomputer will kick off with four high visibility runs ("light-house projects") which are expected to shed light on plasma calculations. From January to March 2012, the four selected codes will run one at a time to test drive the capacities of the supercomputer and achieve maximum performance. The first call for proposals has attracted high numbers of submissions from both European and Japanese researchers that are currently under review. It is expected that routine operation will start in April 2012.

Based on the number of proposals submitted to the first call, there has been an oversubscription by a factor of three of the computer's time, demonstrating the great interest from the European and Japanese fusion communities in the supercomputer facility. The majority of proposals address issues related to plasma physics (turbulence, MHD, edge physics and integrated modelling) together with an important number of proposals addressing technology issues.

[1] The LINPACK benchmark is a measure of a computer's floating point rate of execution. It is the performance parameter used to classify the TOP 500 list of supercomputers.


return to the latest published articles