Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Open Doors Day | An intense and unforgettable experience

    Saturday was Jacques's birthday. At age 90, the long-retired engineer from Aix-en-Provence had only one item on his wish list: to visit ITER for a third time an [...]

    Read more

  • Power conversion | A potent illustration of the "One ITER" spirit

    Europe made the buildings; the piping came from India; China and Korea provided the transformers; Russia manufactured the massive 'busbar' network. The ITER Org [...]

    Read more

  • Fusion world | Upgrade completed on DIII-D tokamak

    The DIII-D National Fusion Program (US) has completed a series of important enhancements to its fusion facility, providing researchers with several first-of-a-k [...]

    Read more

  • Vacuum lab | Ensuring leak test sensitivity

    A helium leak test is one of several factory acceptance tests planned for the sectors of the ITER vacuum vessel before they are shipped to ITER. In a vacuum lab [...]

    Read more

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

Of Interest

See archived entries

Bringing the voltage down

Jeremy Goff, Coil Power Supply Section

The workshop, hosted by ITER's Electrical Engineering Division's Coil Power Supply Section, reunited more than 40 participants. (Click to view larger version...)
The workshop, hosted by ITER's Electrical Engineering Division's Coil Power Supply Section, reunited more than 40 participants.
High-voltage current from the French grid will be delivered to ITER's door by the tall pylons that descend, arms outstretched, from the hills of the CEA Cadarache research facility.

ITER's coil power supply system will convert the 400 kV grid voltage from these lines into controlled direct current in ITER's 22 magnet coils. The high voltage must be transformed down to a much lower voltage so it can be rectified and delivered at very high current through a huge busbar system to the magnet feeders.

A joint workshop was held at ITER from 27-28 February to discuss the instrumentation and control (I&C) for the coil power supply system; it was the first multilateral face-to-face meeting on this topic with all procurement stakeholders present: the Domestic Agencies from China, Korea and Russia and their suppliers, and ITER experts from the CODAC and Electrical Engineering Divisions—more than 40 participants in all.

The I&C system's role will be to configure the plant and allow it to be driven by the plasma control system to produce and maintain a plasma discharge. The system will also monitor and protect the plant and interconnect to the central interlock system, as well as protect personnel and the toroidal field coils from safety hazards by interconnection with the central safety system. The coil power supply system has many other interfaces, for example the pulsed power electrical network and cooling water systems.

Coordinator Jeremy Goff with Wu Yao from the Chinese supplier of the reactive power compensation system, Rongxin Power Electronic Co Ltd (RXPE). (Click to view larger version...)
Coordinator Jeremy Goff with Wu Yao from the Chinese supplier of the reactive power compensation system, Rongxin Power Electronic Co Ltd (RXPE).
The coordinator of this week's workshop, Jeremy Goff, likens the coil power supply system to the heart of ITER, pumping "lifeblood" through the ITER coils. "If the current does not flow there can be no plasma. The coil power supply system will be a huge installation and it must be very reliable. Some plant components will run continuously for weeks at a time ..."

Although the procurement for the system is shared, providing the coordinating "top layer" of the I&C system—the master control system—is the responsibility of Korean Domestic Agency.

The workshop met most of its aims: it brought together all those involved around one table, design proposals were shared, and further work identified to bring all the systems together into one. The participation of CODAC experts was highly beneficial and the next steps towards a common final design can now be taken.


return to the latest published articles