Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Heating | A pinch of moondust in the ITER plasma

    One day in the distant future, fusion plants might be fuelled by helium 3—an isotope that is extremely scarce on Earth but reputed to be abundant on the Moon. B [...]

    Read more

  • Delivery | 2,000 km through canals, locks and tunnels

    When the thruway is closed, one takes the back roads. And when it's low-water season on the Rhine-Rhône canal, a barge leaving Switzerland for the Mediterranean [...]

    Read more

  • Monaco Fellows | A hand in shaping ITER

    For the sixth time, ITER is welcoming a group of five young researchers as part of the Monaco-ITER postdoctoral fellowship scheme. Working alongside experienced [...]

    Read more

  • On site | Drone survey on a perfect day

    There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, co [...]

    Read more

  • AAAS conference | ITER on the world science stage

    With more than 120,000 members globally, the American Association for the Advancement of Science (AAAS) is billed as the world's largest scientific society. The [...]

    Read more

Of Interest

See archived entries

A tiny bit of fission in the giant fusion machine

Robert Arnoux

Luciano Bertalot, technical responsible officer for the Micro Fission Chamber Procurement Arrangement, explaining the characteristics of the device in detail to ITER Director-General Osamu Motojima. (Click to view larger version...)
Luciano Bertalot, technical responsible officer for the Micro Fission Chamber Procurement Arrangement, explaining the characteristics of the device in detail to ITER Director-General Osamu Motojima.
Counting the number of neutrons produced by fusion reactions inside a burning plasma gives a precise indication of how much fusion power is being generated.

But how do you count neutrons?

Previously, fusion installations such as TFTR in the US, JET in Europe and JT-60 in Japan have relied on a device based on the physics of fission: the fission chamber.

A fission chamber is a gas-filled container, whose walls are coated with a thin layer of fissile material such as uranium 235 (U235). When a neutron hits an atom of fissile material the atom splits and a fixed amount of energy is released. Measuring the total energy that is released within the device gives a clear indication of how many neutrons have hit the U235 layer. The number of neutrons, in turn, reveals the quantity of fusion power produced.

In previous tokamaks, fission chambers were rather large and installed outside the vacuum vessel. In ITER, their size will not exceed that of a pencil—hence the term "micro fission chamber."

Four units—containing three micro fission chambers each—will be fitted into the gap between the blanket shield modules and the vacuum vessel. The units' locations have been carefully chosen so that the incoming neutrons can be monitored in all circumstances, whatever the plasma position.

Operating in a burning plasma environment, the ITER micro fission chambers will be necessarily different from those installed in previous fusion machines. Vacuum is one the design challenges: since the argon-filled "pencils" will be placed inside the vacuum vessel, they must be perfectly leak-proof. Temperature must also be taken into consideration, as the vacuum vessel will be "baked" to a temperature of 200 °C prior to plasma shots.

Previous tokamaks did not operate with the fusion fuels deuterium and tritium (or only very briefly). ITER will produce long-duration plasma discharges, submitting the micro fission chambers, like all in-vessel components, to an intense neutron flux.

Four micro fission chamber units will be installed on ITER, two in sector #1 of the vacuum vessel; two in sector #6. (Click to view larger version...)
Four micro fission chamber units will be installed on ITER, two in sector #1 of the vacuum vessel; two in sector #6.
"The technology is challenging but feasible," says Luciano Bertalot, technical responsible officer for the Micro Fission Chamber Procurement Arrangement signed last week. "The system is designed to hold for the twenty years of ITER operation time. It is 'redundant,' which means that even if one of micro fission chamber units fails, we will still be able to measure neutron emission and evaluate the fusion power that ITER produces."

The Procurement Arrangement documents for the ITER micro fission chambers were signed last Wednesday 28 March by the ITER Organization and countersigned by the Japan Atomic Energy Agency (JAEA) on 4 April. "We are looking forward to making this project a reality," said Yoshinori Kusama, head of diagnostics at the Japanese Domestic Agency (JA-DA) on this occasion.

Staff members from the JA-DA took an active part in the Concept Design phase that preceded the signature. Now, the R&D and prototype development phase will begin in Japan.


return to the latest published articles