Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

Europe will manufacture 60 divertor cassettes

Robert Arnoux

Featured here are Cassette Assembly CA #4 et CA #11. There are 19 variances in the diagnostics arrangements within the 54 ITER Divertor cassettes—and as many integration issues... (Click to view larger version...)
Featured here are Cassette Assembly CA #4 et CA #11. There are 19 variances in the diagnostics arrangements within the 54 ITER Divertor cassettes—and as many integration issues...
This is a place that will feel very much like the surface of the Sun. When deuterium-tritium operation begins, the ITER divertor will carry a heat load twenty thousand times higher than that of a hot July day in Provence.

As if that wasn't enough, the divertor structure will also have to withstand tremendous magnetic forces that will press and pull with a force on the order of one hundred tonnes.

An essential component of the ITER machine, the divertor is also one of the most challenging to build, assemble and install.

The ITER divertor acts as the Tokamak's exhaust system, running toroidally along the bottom of the vacuum vessel, extracting helium ash from the burning plasma. It is split into 54 cassettes, each containing a plasma-facing "dome", inner and outer "targets," and a number of diagnostic systems. There are 19 variances in the diagnostics arrangements and as many integration issues ...

Each nine-tonne cassette will be installed inside the vacuum vessel through remote handling operations. The highly complex and delicate installation sequences are being demonstrated and validated at the ITER Divertor Test Platform Facility in Tampere, Finland.

The Procurement Arrangement for the Divertor Cassette and Assembly was signed on Tuesday, 19 April. From left to right, DG Motojima; Paola Miele, Procurement & Contracts senior administrative officer; Frédéric Escourbiac, Tungsten Divertor Section leader and Mario Merola, head of the Internal Components Division. (Click to view larger version...)
The Procurement Arrangement for the Divertor Cassette and Assembly was signed on Tuesday, 19 April. From left to right, DG Motojima; Paola Miele, Procurement & Contracts senior administrative officer; Frédéric Escourbiac, Tungsten Divertor Section leader and Mario Merola, head of the Internal Components Division.
The Procurement Arrangement for the divertor cassette and assembly was signed on Tuesday, 19 April. It covers the manufacturing by Europe of 60 cassette bodies (54 cassettes plus 6 spares) and the integration of the components and diagnostics systems provided by other Domestic Agencies as part of different procurement packages.

"The key challenges in this Procurement Arrangement are: one, the manufacturing tolerance to meet the interfaces (on the order of a fraction of a millimetre); and two, the assembly sequence of the different divertor components," explains Mario Merola, head of the Internal Components Division. "Planning and coordination will be paramount."

Following the production of a full-scale prototype for assembly trials, series production should begin in 2015. The present schedule plans for the installation of all 54 cassettes beginning in 2021 during the second phase of ITER assembly; the divertor will only be needed when hydrogen-helium operation begins in 2022.



return to the latest published articles