Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryostat base | Grand opening soon

    Picture a giant soup plate, 30 metres in diameter, slowing descending into a deep concrete cylinder. Track the near imperceptible movement of the double overhea [...]

    Read more

  • Research | ITER Scientist Fellows are at the cutting edge

    In the area of cutting-edge research—and particularly the sophisticated modelling of plasmas—the project is benefitting from the assistance of world-renowned ex [...]

    Read more

  • Image of the week | Testing the load path

    Teams are preparing now for the commissioning and dynamic load tests that will be carried out in the coming weeks on the assembly bridge cranes. The load tests, [...]

    Read more

  • In memoriam | Physicist John Wesson

    The theoretical physicist, author of a major reference book on magnetic confinement fusion in tokamaks, was known to many members of the ITER community. Some [...]

    Read more

  • CODAC | The "invisible system" that makes all things possible

    It is easy to spot all the big equipment going into ITER; what is not so visible is the underlying software that makes the equipment come alive. Local control [...]

    Read more

Of Interest

See archived entries

The day the rain comes

Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 kilometres of concrete piping. Maximum diameter: 2.2 metres. (Click to view larger version...)
Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 kilometres of concrete piping. Maximum diameter: 2.2 metres.
There was a time when the 42-hectare ITER platform was as flat as a pancake. Now, as work progress on the deep underground drainage network, the landscape is in some areas reminiscent of a World War I battlefield.

Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 km of concrete piping. These pipes, measuring up to 2.2 metres in diameter, will collect rainwater from the platform buildings, roads and trenches.

A branch of the underground network has been designed to evacuate the overflow of a "centennial rain" — extreme rainfall that, statistically, occurs only once every century, but that can lead to water flow estimated at 17.8 m³ per second.

Based on this estimate, a safety margin of approximately 20 percent has been applied to the calculation of ITER's underground rainwater network, which has been dimensioned for a flow of 21.5 m³ per second.

The whole network connects to the storm basins located at the southwest corner of the site through an underground network that was put in place by Agence Iter France during the site preparation phase.

This giant plumbing operation, which necessitated the removal of 50,000 m³ of earth, began in March and will be completed in November.


return to the latest published articles