Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

  • Star struck | For Silicon Valley philanthropist ITER is "the only way"

    One is planning to send tiny spacecrafts to the nearest stellar system; the other aims to bring the power of the stars to Earth. Yuri Milner, Russian-born entre [...]

    Read more

  • Cryogenics | How low can you go?

    The realm of the extremely cold is fascinating. Temperatures driving toward absolute zero, 'steaming' cryogenic liquids and hovering magnets create an air of ma [...]

    Read more

  • Stakeholders | Europe's vote of confidence

    The bottom line is always what matters. For the statement issued on Thursday 12 April by the European Council of Ministers, the key phrase was in the final poin [...]

    Read more

Of Interest

See archived articles

The day the rain comes

Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 kilometres of concrete piping. Maximum diameter: 2.2 metres. (Click to view larger version...)
Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 kilometres of concrete piping. Maximum diameter: 2.2 metres.
There was a time when the 42-hectare ITER platform was as flat as a pancake. Now, as work progress on the deep underground drainage network, the landscape is in some areas reminiscent of a World War I battlefield.

Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 km of concrete piping. These pipes, measuring up to 2.2 metres in diameter, will collect rainwater from the platform buildings, roads and trenches.

A branch of the underground network has been designed to evacuate the overflow of a "centennial rain" — extreme rainfall that, statistically, occurs only once every century, but that can lead to water flow estimated at 17.8 m³ per second.

Based on this estimate, a safety margin of approximately 20 percent has been applied to the calculation of ITER's underground rainwater network, which has been dimensioned for a flow of 21.5 m³ per second.

The whole network connects to the storm basins located at the southwest corner of the site through an underground network that was put in place by Agence Iter France during the site preparation phase.

This giant plumbing operation, which necessitated the removal of 50,000 m³ of earth, began in March and will be completed in November.


return to the latest published articles