Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cold boxes reach home

    Three cryogenic plant cold boxeswere moved last week from temporary storage to their final destination on the ITER site. It was the occasion to remember a piece [...]

    Read more

  • Kazakh Tokamak celebrates first plasma

    The fusion world directed its applause to the east earlier this month as the Kazakh tokamak KTM started operations with a first plasma discharge. 'We are happ [...]

    Read more

  • Small delivery for a very massive tool

    At ITER, two massive sector sub-assembly toolswill suspend and equip the vacuum vessel sectors in the Assembly Hall before they are transported by overhead cran [...]

    Read more

  • Without minimizing challenges, Council reaffirms commitment

    On 24 October 2007, the ITER Organization was officially established following the ratification by the seven ITER Members of the project's constitutive document [...]

    Read more

  • Heat waves

    Plasma is like a tenuous mist of particles—light atoms that have been dissociated into ions (the atom nucleus) and free-roaming electrons. In order to study pla [...]

    Read more

Of Interest

See archived articles

The day the rain comes

Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 kilometres of concrete piping. Maximum diameter: 2.2 metres. (Click to view larger version...)
Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 kilometres of concrete piping. Maximum diameter: 2.2 metres.
There was a time when the 42-hectare ITER platform was as flat as a pancake. Now, as work progress on the deep underground drainage network, the landscape is in some areas reminiscent of a World War I battlefield.

Eleven-metre-deep trenches now crisscross the platform to accommodate 1.6 km of concrete piping. These pipes, measuring up to 2.2 metres in diameter, will collect rainwater from the platform buildings, roads and trenches.

A branch of the underground network has been designed to evacuate the overflow of a "centennial rain" — extreme rainfall that, statistically, occurs only once every century, but that can lead to water flow estimated at 17.8 m³ per second.

Based on this estimate, a safety margin of approximately 20 percent has been applied to the calculation of ITER's underground rainwater network, which has been dimensioned for a flow of 21.5 m³ per second.

The whole network connects to the storm basins located at the southwest corner of the site through an underground network that was put in place by Agence Iter France during the site preparation phase.

This giant plumbing operation, which necessitated the removal of 50,000 m³ of earth, began in March and will be completed in November.


return to the latest published articles