Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Men of measure

    'Neither snow nor rain nor heat nor gloom of night stays these couriers from the swift completion of their appointed rounds.' [From the Greek historian Herodotu [...]

    Read more

  • The end of a nine-year journey

    In December, as toroidal field conductor unit length #133 came off the production line, the ITER community celebrated a major milestone—the end of a nine-year p [...]

    Read more

  • The little coupler that could

    Concrete and steel met at the end of the 19th century, never to part again. From their encounter a new material was born that revolutionized construction techni [...]

    Read more

  • The radio power house

    The steel structurethat's being erected against the northeast side of the Assembly Hall is for a large building that will be densely packed with power supplies [...]

    Read more

  • Spaceport ITER

    At nightfall, when buildings, work areas, roads and parking lots light up, the ITER site looks like an alien spaceport. Drenched in the yellow glow of sodium l [...]

    Read more

Of Interest

See archived articles

Where conductors are born

-Alexander Petrov, Russian Domestic Agency

Specialists at VNIIKP in Podolsk, Russia have produced a 760-metre niobium-tin (Nb3Sn) cable—the second product of this kind manufactured in Russia. (Click to view larger version...)
Specialists at VNIIKP in Podolsk, Russia have produced a 760-metre niobium-tin (Nb3Sn) cable—the second product of this kind manufactured in Russia.
Manufacturing the toroidal field conductors for the ITER magnet system is a sophisticated, multistage process. Early this year, specialists at the All-Russian Cable Scientific Research and Development Institute (VNIIKP) in Podolsk, Russia twisted supraconductor strands into a 760-metre niobium-tin (Nb3Sn) cable—the second product of this kind manufactured in Russia. 

At the end of February, at the High Energy Physics Institute in Protvino, this cable was pulled through a stainless steel jacket that had been assembled on site. The process involved the most advanced Russian technology and knowhow. The jacket itself—reaching nearly a kilometre in length and composed of more than 70 tubes welded together by gas tungsten-arc welding technology—was exposed to triple testing of the weld seams' quality and reliability.

During the next stage in the process, the jacketed cable, called a conductor, was compacted and spooled into a solenoid measuring four metres in diameter. Following vacuum and hydraulic tests at the Kurchatov Institute in Moscow, the conductor will be shipped to Europe.

Follow this link to a 10-minute video in English that will bring you inside the Russian factories involved with toroidal field conductor manufacturing for ITER.

Click here to see the video in Russian.


return to the latest published articles