Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Making remote handling less remote

    Over a wet and windy three-day period on the ITER site in November, around 90 representatives of the ITER Organization, the Domestic Agencies of Europe and Japa [...]

    Read more

  • The framework for sharing ITER intellectual property

    In signing the ITER Agreement in 2006, the seven ITER Members were agreeing not only to share in the costs of constructing and operating the ITER facility, but [...]

    Read more

  • Wendelstein achieves ultra-precise magnetic topology

    A recent article in the online journal Nature Communications confirms that the complex topology of the magnetic field of Wendelstein 7-X—the world's largest ste [...]

    Read more

  • The Matrix, rigid and fluid

    A fast-growing array of structures and buildings has been emerging across the ITER worksite platform under the control and supervision of the European Domestic [...]

    Read more

  • By road, river and sea

    They travelled by road from the Air Liquide factory near Grenoble, sailed down the Rhône River from Lyon and entered the Mediterranean to the east of Fos-sur-Me [...]

    Read more

Of Interest

See archived articles

Where conductors are born

-Alexander Petrov, Russian Domestic Agency

Specialists at VNIIKP in Podolsk, Russia have produced a 760-metre niobium-tin (Nb3Sn) cable—the second product of this kind manufactured in Russia. (Click to view larger version...)
Specialists at VNIIKP in Podolsk, Russia have produced a 760-metre niobium-tin (Nb3Sn) cable—the second product of this kind manufactured in Russia.
Manufacturing the toroidal field conductors for the ITER magnet system is a sophisticated, multistage process. Early this year, specialists at the All-Russian Cable Scientific Research and Development Institute (VNIIKP) in Podolsk, Russia twisted supraconductor strands into a 760-metre niobium-tin (Nb3Sn) cable—the second product of this kind manufactured in Russia. 

At the end of February, at the High Energy Physics Institute in Protvino, this cable was pulled through a stainless steel jacket that had been assembled on site. The process involved the most advanced Russian technology and knowhow. The jacket itself—reaching nearly a kilometre in length and composed of more than 70 tubes welded together by gas tungsten-arc welding technology—was exposed to triple testing of the weld seams' quality and reliability.

During the next stage in the process, the jacketed cable, called a conductor, was compacted and spooled into a solenoid measuring four metres in diameter. Following vacuum and hydraulic tests at the Kurchatov Institute in Moscow, the conductor will be shipped to Europe.

Follow this link to a 10-minute video in English that will bring you inside the Russian factories involved with toroidal field conductor manufacturing for ITER.

Click here to see the video in Russian.


return to the latest published articles