Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

  • Assembly | Set of handling tools for in-vessel installation finalized

    Inside of a test facility that reproduces the volume and geometry of the ITER vacuum vessel environment, a team from CNIM Systèmes Industriels has dem [...]

    Read more

  • 360° image of the week | The assembly theatre

    Ever since it was invented almost two centuries ago, photography has tried to capture what the human eye actually sees. Despite huge progress achieved, it has n [...]

    Read more

Of Interest

See archived entries

In terms of development, is fusion really different?

Contrary to widespread opinion, investment in fusion is quite low when compared to that of other emerging energy sources. According to Prof. Lopes-Cardozo ''the spending on fusion will have to double every five years or so'' if we want to bring fusion power to the grid before 2060. (Click to view larger version...)
Contrary to widespread opinion, investment in fusion is quite low when compared to that of other emerging energy sources. According to Prof. Lopes-Cardozo ''the spending on fusion will have to double every five years or so'' if we want to bring fusion power to the grid before 2060.
There's good and there's bad in the public perception of what fusion is about. On the bright side, it is a "clean, safe, for all and forever" potential source of energy; on the not-so-bright one, it is "expensive and takes forever." Fusion energy, as the worn-out joke goes, will always be 50 years away.

But is fusion development really different from that of other energy sources? In other words, how does fusion fit into "the spectrum of energy technology developments"?

Niek Lopes-Cardozo, a veteran fusion physicist and a professor at Eindhoven (NL) University of Technology was at ITER this Thursday 13 September to provide answers to this question.

The many graphs and figures he presented to the Inside-ITER audience demonstrate that all energy sources—fission, solar, wind, etc.,—are governed by the same development model.

They all go through a phase of "exponential growth to materiality" during which no net energy is produced. This first phase can last 30 to 50 years during which the emerging energy source is a "niche market," helped along by public subsidies.

Whether the emerging source generates 10 MW or 100 GW of energy during that period doesn't make much of a difference: it is still a fraction of the global needs, it "doesn't save the world," and it doesn't pay back the energy invested to bring it to 'materiality'".

The second phase of any energy source development is characterized by a 30- to 50-year "linear growth" and this is when the new energy source becomes competitive.

Now where does fusion fit into that picture? A crucial factor in the transition from R&D (the present state of fusion) to "exponential growth to materiality" is the size of the capital investment. As demonstrated by Lopes-Cardozo's figures, and contrary to widespread opinion, investment in fusion is quite low when compared to that of other emerging energy sources.

Take wind, for instance: global investment is presently in the range of EUR 100 billion per year; it is EUR 50 billion per year for photovoltaic and EUR 20 billion for concentrated solar power.

Compared to these numbers, fusion, with a mere EUR 2 billion per year is the poor man of energy research. "We should not pretend that we can go exponential with the present budgets allocated to fusion," said Lopes-Cardozo.

Addressing "the heroes" of the "cornerstone project in fusion", he insisted on the importance of "staying on the roadmap" and of continuing to aim at bringing fusion power to the grid before 2060. This implies that "the spending on fusion will have to double every five years or so—as it does for other energy sources in development."


return to the latest published articles