Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | A vertical displacement event

    Three vertical storage tanks have been installed since last week outside of the cryoplant. The operation requires two powerful cranes working in tandem but also [...]

    Read more

  • Science in Texas | ITER draws enthusiasm

    At its Annual Meeting in Austin, Texas, the American Association for the Advancement of Science, AAAS, invited participants to illustrate how investment in basi [...]

    Read more

  • Image of the week | In the belly of the (flying) whale

    On 15 February, "Isabelle' and 'Jeanne," the last of the ten toroidal field coils manufactured in France for the EU-Japan tokamak JT-60SA, were swallo [...]

    Read more

  • Nuclear safety | "A pragmatic and creative approach"

    Safety is at the core of all nuclear activities. Over the past seven decades—since the first experimental reactor was brought to criticality in 1942—codes, stan [...]

    Read more

  • Intellectual property | Modernizing processes and practices

    'A wise man will always allow a fool to rob him of ideas without yelling 'Thief.' If he is wise, he has not been impoverished,' says Ben Hecht in A Child of the [...]

    Read more

Of Interest

See archived articles

DEMO: time for real proposals

Neill Taylor, Division Head, Nuclear Safety and Analysis

One of the many DEMO concepts presented at the IAEA workshop at the University of California, Los Angeles, on 15-19 October. This one is called SlimCS and is being studied in Japan. © Japan Atomic Energy Agency (Click to view larger version...)
One of the many DEMO concepts presented at the IAEA workshop at the University of California, Los Angeles, on 15-19 October. This one is called SlimCS and is being studied in Japan. © Japan Atomic Energy Agency
ITER represents a huge step towards the realization of fusion energy. But even once ITER has achieved the expected plasma performance, a lot remains to be done before we have electricity on our grid generated by fusion.

Fusion researchers around the world are starting to seriously consider the next major step after ITER, known as DEMO, which should be a DEMOnstration power plant that produces electrical power and paves the way for the commercially viable fusion power stations that will follow.

Many conceptual ideas for DEMO designs have been produced over the years but now that ITER construction is well under way, real proposals for DEMO are being planned.

Unlike ITER, most work on DEMO has been done without much international collaboration although Europe and Japan are cooperating on DEMO design work as part of the "Broader Approach." But to promote more international sharing of work on the path towards DEMO, the International Atomic Energy Agency (IAEA) arranged a DEMO Programme Workshop that was held at the University of California, Los Angeles, on 15-19 October. Over 60 attendees came from fusion research institutes worldwide, including all the countries that are members of ITER.

The workshop was organized around technical topics which are seen as major issues that must be addressed before DEMO can be realized:  power extraction, tritium breeding, plasma exhaust, and magnetic configurations.  There were also general talks presenting the status of programs towards DEMO in some of the countries represented.

There are striking differences between the ideas for the plant in the views from different countries. Concepts include tokamaks of various sizes and with varying degrees of advancement from the technology and physics of ITER.

Two participants from the ITER Organization, Neill Taylor and Scott Willms, attended the IAEA workshop at UCLA to pass on experience from the ITER project. (Click to view larger version...)
Two participants from the ITER Organization, Neill Taylor and Scott Willms, attended the IAEA workshop at UCLA to pass on experience from the ITER project.
But DEMO could also be a stellarator, or even a "hybrid" that combines fusion and fission in a single device. Some believe that an intermediate step, sometimes called a "Fusion Nuclear Science Facility" or "Component Test Facility," is needed between ITER and DEMO. Such installations would be used to develop and test systems such as breeding blankets, to supplement the work to be done using Test Blanket Systems in ITER. Others prefer to aim for a "near-term" DEMO that would begin by testing its own components.

In all cases, significant materials development is needed, as DEMO will certainly need more advanced structural materials than those being used in ITER. According to some opinions, the planned IFMIF facility will only partly provided the materials tests needed.

With so many diverse ideas, it is not surprising that international collaboration has been scarce. However the workshop did show that there are plenty of common areas in the R&D that needs to be performed, and IAEA will encourage collaboration over these.


return to the latest published articles