Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Heating | A pinch of moondust in the ITER plasma

    One day in the distant future, fusion plants might be fuelled by helium 3—an isotope that is extremely scarce on Earth but reputed to be abundant on the Moon. B [...]

    Read more

  • Delivery | 2,000 km through canals, locks and tunnels

    When the thruway is closed, one takes the back roads. And when it's low-water season on the Rhine-Rhône canal, a barge leaving Switzerland for the Mediterranean [...]

    Read more

  • Monaco Fellows | A hand in shaping ITER

    For the sixth time, ITER is welcoming a group of five young researchers as part of the Monaco-ITER postdoctoral fellowship scheme. Working alongside experienced [...]

    Read more

  • On site | Drone survey on a perfect day

    There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, co [...]

    Read more

  • AAAS conference | ITER on the world science stage

    With more than 120,000 members globally, the American Association for the Advancement of Science (AAAS) is billed as the world's largest scientific society. The [...]

    Read more

Of Interest

See archived entries

Planning for Test Blankets Modules radwaste

Tritium can be produced through the impact of fusion-generated neutrons on lithium nuclides present in the plasma-facing components. Based on this principle, six experimental Test Blanket Modules will be installed at the equatorial ports of the ITER vacuum vessel wall. (Click to view larger version...)
Tritium can be produced through the impact of fusion-generated neutrons on lithium nuclides present in the plasma-facing components. Based on this principle, six experimental Test Blanket Modules will be installed at the equatorial ports of the ITER vacuum vessel wall.
Self-sustained tritium production is essential to the future of fusion. While an experimental machine such as ITER will draw upon the tritium presently available in the market (a couple dozen kilos), future fusion plants will have to breed their own tritium supply in a continuous manner.

Tritium, which occurs only in trace quantities in nature, can be produced through the impact of fusion-generated neutrons on lithium nuclides present in the plasma-facing components. Based on this principle, six experimental Test Blanket Modules (TBM) will be installed at the equatorial ports of the ITER vacuum vessel wall. Two of them will be procured by Europe; India, China, Japan and Korea will each contribute one. The Russian Federation and the Unites States will give support on specific technical items.

Over the years, as they are impacted by the neutron flux, the ITER TBMs will progressively become activated. "However different each TBM concept may be, we can reasonably anticipate the amount of radwaste that will be produced within the Tritium Breeding Systems (TBSs) and that we will have to manage," explains Magali Benchikhoune, the ITER Hot Cells & Radwaste Section leader and chair of the Test Blanket Program Working Group on TBS RadWaste Management (TBP-WG-RWM) that has been assigned to deal with this matter.

Following three and a half months of videoconference meetings, the international players of the TBP-WG-RWM met for two days—and for the first time in person—last week at ITER.

The group comprised the ITER Members' Test Blanket Module representatives; ITER Organization representatives for the TBM Program, radwaste management and safety; legal experts from all the contributing Members; and representatives from Agence Iter France (as the interface between ITER and the Host country, France).

Following three and a half months of videoconference meetings, the international players of the Test Blanket Program Working Group on TBS RadWaste Management met for two days—and for the first time in person—last week at ITER. (Click to view larger version...)
Following three and a half months of videoconference meetings, the international players of the Test Blanket Program Working Group on TBS RadWaste Management met for two days—and for the first time in person—last week at ITER.
Once the breeding experiments are completed, the activated TBMs will go back for further analysis to the ITER Member who procured them. The rest (and the largest part) of each system will go into interim storage and, eventually, to a permanent disposal facility managed by the French Nuclear Waste Management Agency ANDRA.

How to approach this issue? What are the realistic options to manage and transport the irradiated components? What are the cost drivers? What can be optimized? These questions were central to the meeting that summarized and developed the work accomplished since the Working Group kick-off meeting on 19 July. "Whether from ITER, Agence Iter France, CEA or the ITER Members," says Magali, "we all worked hard and the two-day meeting was a very motivating experience for all of us."

The progress of the work by this Working Group will be reported to the TBM Program Committee, which heads all TBM-related activities, during its meeting in early November.
- R.A.


return to the latest published articles