Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Heating | A pinch of moondust in the ITER plasma

    One day in the distant future, fusion plants might be fuelled by helium 3—an isotope that is extremely scarce on Earth but reputed to be abundant on the Moon. B [...]

    Read more

  • Delivery | 2,000 km through canals, locks and tunnels

    When the thruway is closed, one takes the back roads. And when it's low-water season on the Rhine-Rhône canal, a barge leaving Switzerland for the Mediterranean [...]

    Read more

  • Monaco Fellows | A hand in shaping ITER

    For the sixth time, ITER is welcoming a group of five young researchers as part of the Monaco-ITER postdoctoral fellowship scheme. Working alongside experienced [...]

    Read more

  • On site | Drone survey on a perfect day

    There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, co [...]

    Read more

  • AAAS conference | ITER on the world science stage

    With more than 120,000 members globally, the American Association for the Advancement of Science (AAAS) is billed as the world's largest scientific society. The [...]

    Read more

Of Interest

See archived entries

The beauty and power of lithium

Phil Dooley, EFDA

This kunzite crystal is not only beautiful, but it contains lithium, a raw material for fusion. In future fusion power stations lithium will be converted into one of the potent fusion fuels, tritium, by neutron bombardment.

Kunzite is a silicate that contains lithium and also aluminium. It also comes in shades of yellow and also a green variety, which is known as hiddenite. Hiddenite crystals can grow to huge sizes—the biggest ever found being over 14 metres long.

There are other lithium-containing minerals: rose or yellow coloured lepidolite, which contains potassium and fluorine, or red-brown lithiophylite, which is lithium manganese phosphate. These are all types of granite, an igneous rock formed by cooling volcanic magma or lava.

Kunzite is one of several lithium-containing minerals. The total lithium content in the Earth's crust is estimated at between 20 and 70 parts per million. (Click to view larger version...)
Kunzite is one of several lithium-containing minerals. The total lithium content in the Earth's crust is estimated at between 20 and 70 parts per million.
The total lithium content in the Earth's crust is estimated at between 20 and 70 parts per million (compared with the content in water of deuterium—fusion's other fuel—which is 35 parts per million). However the economically viable reserves are estimated to be a modest 13 million tonnes.

For comparison, the estimated viable uranium deposits amount to 35 million tonnes—but fusion gives four times more energy per kilogram than uranium. Even the vast coal deposits of the world, estimated at 860 billion tonnes, seem less extensive when you factor in that, per kilogram of fuel, fusion is four million times more efficient than coal at producing energy.

There is much speculation about how long the terrestrial deposits of these fuels might last, but it is perhaps irrelevant. The value of lithium as a potent fusion fuel will doubtless inspire new processing techniques which will enable extraction of lithium from sea water which will end the discussion. The estimated reserves of lithium in the ocean is 230 billion tonnes, several million years' supply.

This story was originally published on the EFDA website.


return to the latest published articles