Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

ITER CODAC controls KSTAR in real-time

Mikyung Park and the KSTAR team

Plot of data acquired during CODAC real-time control of KSTAR two weeks ago in Daejeon, South Korea. (Click to view larger version...)
Plot of data acquired during CODAC real-time control of KSTAR two weeks ago in Daejeon, South Korea.
Two weeks ago, ITER CODAC technologies (Control, Data Access and Communication) successfully demonstrated their capability for Tokamak control at KSTAR (Korea Superconducting Tokamak Advanced Research), a tokamak in operation since 2008 in Daejeon, South Korea.

The KSTAR and ITER control systems share some key similarities (e.g., EPICS as middleware for tokamak control and operation), making KSTAR a natural fit for evaluating and validating ITER CODAC technologies.

Operating under a Memorandum of Understanding between ITER and KSTAR, signed in 2010, the KSTAR control team has implemented a duplication of the fuel control system and a part of the plasma control system using CODAC technologies (standardized hardware and CODAC Core System) over the past 24 months. On 26 July, a first test was successfully executed by injecting deuterium gas into the vacuum vessel based on pre-configured waveforms from the plasma control system.

The KSTAR control room during the plasma density feedback operation. (Click to view larger version...)
The KSTAR control room during the plasma density feedback operation.
The project was successfully concluded on 21 November with a demonstration of the real-time feedback control of the KSTAR plasma density, with ITER Organization CODAC staff joining the demonstration.

The algorithm used for calculating the density from the microwave interferometer diagnostic (sampled at 10 kHz)  and computing the control command was implemented on a computer using ATCA form factor, the CODAC standard real-time operating system (RedHat Linux with MRG-R) and the MARTe real-time framework originally developed at JET.

The control demand was transferred over CODAC real-time network (10 Gbps Ethernet) to the fuel controller at 10 kHz and finally applied to the piezo control valve at 10 kHz. The plot shows the key measured signal and applied commands, such as required plasma density, piezo valve command and the resulting measured plasma density. The feedback loop was switched on at 1.2 sec and switched off at 5.0 sec.

The resulting performance is in excellent agreement with KSTAR native control system, confirming that the technologies adopted or being considered for ITER CODAC are delivering excellent performance in the real-life environment of an operational tokamak.



return to the latest published articles