Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

  • Manufacturing | Thermal shield milestone in Korea

    Six years after the start of fabrication, Korean contractor SFA has completed the last 40° sector of vacuum vessel thermal shield. The stainless steel panels, c [...]

    Read more

Of Interest

See archived entries

Czech COMPASS tokamak masters H-mode

Jan Mlynar and Radomir Panek, Institute of Plasma Physics, Prague

The core of the team behind (and in front of) H-mode success: from left to right, Filip Janky (tokamak control systems), Radomír Pánek (head of the Tokamak department), Jan Stöckel (senior physicist), Vladimír Weinzettl (plasma diagnostics), Jozef Varju (neutral beam), and Josef Havlíček (shift operator). (Click to view larger version...)
The core of the team behind (and in front of) H-mode success: from left to right, Filip Janky (tokamak control systems), Radomír Pánek (head of the Tokamak department), Jan Stöckel (senior physicist), Vladimír Weinzettl (plasma diagnostics), Jozef Varju (neutral beam), and Josef Havlíček (shift operator).
On 29 November 2012, all those who were present in the COMPASS control room cheered when distinctive H‐mode operation was observed for the first time since the tokamak had been reinstalled in the Institute of Plasma Physics in Prague in 2008.
 
The H‐mode or "high confinement mode" refers to a sudden improvement of plasma confinement in the magnetic field of tokamaks—approximately by a factor of two—and is foreseen as the standard mode of operation for ITER.
 
The first H‐mode operation in COMPASS was achieved with the 210 kW neutral beam heating: ten milliseconds after the beam injection started, the intensity of visible light known as the Dα radiation suddenly decreased and the plasma stored energy and density considerably increased.
 
The day after, on 30 November 2012, Ohmic H‐mode operation (i.e., without the beam heating) was achieved during the intentional current ramp‐down phase of the discharge. Transition from Type III ELM (Edge Localized Mode) instabilities to ELM-free H‐mode operation was observed.
 
In the experiments, the COMPASS plasmas were confined in the divertor configuration, just like the JET and ITER plasma configurations, although five and ten times smaller in linear dimensions, respectively. Mastering H‐mode was very important to the COMPASS team in order to perform similar experiments in support of the large fusion facilities.
 
In this respect, the COMPASS Tokamak is well equipped with diagnostic systems for studies of the plasma edge, where the so‐called pedestal of the H‐mode is located (the region of plasma edge where pressure increases sharply).
 
The H‐mode pedestal forms in the region of the plasma transport barrier, which is behind the improved plasma confinement. Better insight into physics of this narrow plasma region is required in order to enhance control of the power flux, plasma heating and the ELM instabilities in fusion reactors.


return to the latest published articles